Dogs Point North-South When They Pee and Poop

Dogs Point North-South

Dogs point North-South when they pee and poop. They use the Earth’s magnetic field when urinating and defecating, aligning their bodies in the N-S axis.

If I wrote this on April 1st, everyone would take that for an April Fool’s prank. It is not. It is the conclusion of a scientific project conducted by Hart et al. and involving researchers from the Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, and the Faculty of Biology, University of Duisburg-Essen in Germany (Hart et al. 2013).

 

Dogs Register Small Variations in Earth’s Magnetic Field

The study concludes dogs (Canis lupus familiaris) register small variations in Earth’s magnetic field after examining the behavior of 70 individuals (28 males and 42 females) belonging to 37 breeds, collected by 37 dog owners/reporters.

The researchers collected data on alignment during defecation (n = 1,893 observations, 55 dogs) and urination (n = 5,582, 59 dogs) from December 2011 through July 2013 in the Czech Republic and in Germany.

Under calm magnetic field conditions, dogs preferred to defecate with their bodies aligned along the north-south axis, even when sometimes facing south. Dogs not only favored N-S but also avoid E-W.

The data shows that larger and faster changes in magnetic conditions result in a random distribution of body alignments, i.e., a lowering of the preferences and ceasing of the avoidances, which may result from the magnetic disturbance or the intentional shutdown of the magnetoreception mechanism.

To avert any bias, all dogs moved in a free-roaming environment, off-lead and not restricted by walls or roads that would influence their movements. The routes of walks changed to exclude or limit pseudo-replication caused by the dogs defecating and urinating in the same few places.

The researchers also excluded the sun, polarized light, and the wind as determining factors for the body alignment of the dogs.

 

No Differences Between Males and Females

The study found no differences in the alignment of males and females during defecation and of the latter during urination. They all assume similar postures during defecation and females’ urination. Urinating males showed slightly different preferences to the females’ choices. The male leg lifting posture, while urinating, could explain these discrepancies.

 

No Answer to Why Dogs Prefer the North-South Axis

We have no answer to why dogs prefer the north-south axis and avoid east-west. It may be intentional, in which case they must perceive the magnetic field with one of their senses (as a haptic stimulus), or maybe they feel more comfortable aligning them in a particular direction (controlled at the vegetative level).

 

New Perspectives

Earlier studies confirmed that the natural fluctuations of the Earth’s magnetic field may disturb orientation in birds, bees, whales, and even affect vegetative functions and behavior in humans.

Studies on the wolves’ (Canis lupus lupus) homing are inconclusive. We cannot rule out the possible influence of an inherent sense of direction. There may be critical periods during a wolf’s life during which specific elements of its environment may imprint on it. In a study, the simplest hypothesis that explained the movement of four wolves was responses to visual, olfactory, and auditory cues with the latter probably being the most important. The wolves seemed driven to return to familiar territory, using the strongest learned exogenous cues (Henshaw and Stephenson 1974). Magnetoreception could have been a homing aid.

The findings of Hart et al. open new perspectives on how organisms use magnetic fields for direction.

References

Begall, S., Malkemper, P., Burda, H. (2014) Magnetoreception in mammals. Advances in the Study of Behavior, 2014. pp 45-79.

Dimitrova, S., Stoilova, I., and Cholakov, I. (2004) Influence of local geomagnetic storms on arterial blood pressure. Bioelectromagnetics 2004, 25:408–414. https://doi.org/10.1002/bem.20009.

Hart V, Malkemper EP, Kušta T, Begall S, Nováková P, Hanzal V, Pleskač L, Ježek M, Policht R, Husinec V, Červený J, Burda H. (2013) Directional compass preference for landing in water birds. Frontiers Zool 2013, 10:38. https://doi.org/10.1186/1742-9994-10-38.

Hart, V. et al. (2013) Dogs are sensitive to small variations of the Earth’s magnetic field. Frontiers in Zoology 2013, 10:80.

Henshaw, R.E., and Stephenson, R.O. (1974) Homing in the gray wolf (Canis lupus). J Mammal 1974, 55:234–237.

Southern, W.E. (1978) Orientation Responses of Ring-Billed Gull Chicks: A Re-Evaluation. In Schmidt-Koenig K., Keeton W.T. (eds) Animal Migration, Navigation, and Homing. Proceedings in Life Sciences. Springer, Berlin, Heidelberg, pp 311-317.

Featured illustration by Anton Antonsen.

Featured Course of the Week

Canine Behavior Canine Behavior studies dog behavior in the natural and in the human environment, reviewing the behavior of the domestic dog and the related wild species. An important course for dog training, which is full of myths unsupported by scientific research.

Featured Price: € 168.00 € 98.00

 

Learn more in our course Ethology. Ethology studies the behavior of animals in their natural environment. It is fundamental knowledge for the dedicated student of animal behavior as well as for any competent animal trainer. Roger Abrantes wrote the textbook included in the online course as a beautiful flip page book. Learn ethology from a leading ethologist.

Ethology Course

Do Animals Show Altruism?

Do Animals Show Altruism?

Introduction |Etymology | Definition and Problems | The Altruism Paradox- Group selection—Wilson | Kin Selection—Maynard Smith | Reciprocal Altruism—Trivers | Genetic Selfishness—Dawkins | Phenotypic plasticity | An Example We All Know—Do Dogs Show Altruistic Behavior? | Conclusion and Perspectives

________

 

Altruism means unselfishness, selflessness, the regard for others as a principle (the opposite of egoism or selfishness). We all use the word in our daily language, feeling confident we know everything about altruism, its meaning, and implications, but do we? The concept poses many questions to biologists, philosophers, and other scientists. It has always done. For one, defining altruism isn’t as straightforward as the introductory paragraph above may seem to imply. Then, setting up a model where such behavior makes sense and can evolve without contradicting evolutionary theory has proven to be a real brain twister.

 

 

Etymology

Altruism derives from the French autrui = other people. Autrui developed from the Old French autre = other which itself comes from Latin alter = other. [1] Under the influence of alter, the French autrui produced the altrui- of the French altruisme and the English altruism. The English term has been in use since the mid-1800s. The translation of Auguste Comte (the French founder of the philosophical school of positivism), who coined the term for an antonym of egoism, [2] contributed to spreading its adoption in English.

 

 

Definitions and Problems

What is altruism? The vague definition of the term makes us doubt whether altruistic behavior is possible at all. Note that most synonyms of ‘altruism’ are not much more enlightening—also needing some explaining. If to be altruistic, the actor must get nothing at all in return for its actions, then we may question if any act qualifies as altruistic. Self-satisfaction always seems to follow a charitable act. Therefore, according to the theory of psychological egoism, we cannot describe sharing, helping, or sacrificing as altruistic. [3]

If we define altruism as unselfish conduct in the short term, i.e., without immediate benefit, then we can find more examples of such acts. One typical case is parental behavior. Parents do plenty for their progeny with no direct advantage to themselves. Female canine mothers, including our domestic dogs, Canis lupus familiaris, spend enough time and energy looking after their pups, feeding them, and teaching them various skills. [4] They regurgitate for them and defend them if they are in danger.

In the wild social canids, pack members also support caring for youngsters without immediate benefits. In jackals, Canis aureus—a group comprising father, mother, and cubs—when a juvenile is present (almost always, a sister to the newborn), she will help rear her younger sibling. [5].

However, note that some behavior we classify as altruistic may have a different and more plausible explanation. The case (in the Samburu National Park in Kenya) of a female lion adopting an oryx calf is more likely to result from a hormonal imbalance affecting its maternal instinct, than to altruism. [6]

Last, a problem of great concern, one that had preoccupied great minds in biology, is the ‘altruism paradox.’

Darwin well knew of that. He writes, “It is extremely doubtful whether the offspring of the more sympathetic and benevolent parents, or of those who were the most faithful to their comrades, would be reared in greater numbers than the children of selfish and treacherous parents belonging to the same tribe. He who was ready to sacrifice his life, as many a savage has been, rather than betray his comrades, would often leave no offspring to inherit his noble nature.” [7]

 

 

The Altruism Paradox

In explaining kin selection, evolutionary biologists imagine a gene that causes its bearer to behave altruistically toward other organisms and those without it to behave selfishly. “The altruists will be at a fitness disadvantage, so we should expect the altruistic gene to be eliminated from the population.” [8] That is, in a nutshell, the problem of altruism for the evolutionary scientist.

How can an altruistic gene, coding for the weaker altruistic phenotype, thrive in competition against a selfish one that codes for the fitter selfish phenotype? Hence, we have the altruism paradox. As we shall see, there might be a workaround this issue, but let us first review the traditional models.

 

 

Group Selection

Group selection is another proposed mechanism of evolution in which natural selection operates at the group level, instead of at the level of the individual [9][10].

Darwin, in “The Descent of Man” in 1871,[7] attempted to explain the evolution of human altruism as a selection process at the group level: “When two tribes of primeval man, living in the same country, came into competition, if (other things being equal) the one tribe included a great number of courageous, sympathetic and faithful members, who were always ready to warn each other of danger, to aid and defend each other, this tribe would succeed better and conquer the other.” [7]

Darwin’s explanation seems a tad non-Darwinian, thus revealing the magnitude of the problem.

A winner has no impact on evolution, per se, unless it has a better ‘Darwinian or inclusive fitness’ (the genetic contribution of an individual to the next generation’s gene pool relative to the average for the population). An altruist may win but if its ‘Darwinian and inclusive fitness’ is nil, altruism stops with it. If altruism survives, even though donors perish leaving no progeny, the survival of the fittest is not true for the fittest are those who leave the most copies of themselves in successive generations.

This issue has bothered many since Darwin, among them, Hamilton [11]. E. O. Wilson and D. S, Wilson write: ‘‘[…] something more than natural selection within single groups is required to explain how altruism and other group-advantageous traits evolve by natural selection.” [12]

For natural selection to favor altruism in a broader scenario, the ‘within-group’ disadvantage of the altruist must be offset by the ‘between-group’ advantage of the group including altruists. [13] ‘‘Cooperation is always vulnerable to exploitation by defectors; hence, the evolution of cooperation requires specific mechanisms, which allow natural selection to favor cooperation over defection.’’ [14][15]

For group selection to be viable, we must assume that the variation between groups is larger than the variation within groups. Since selection acts upon the phenotype, competition and selection can operate at all levels. Therefore, D. S. Wilson contends that “At all scales, there must be mechanisms that coordinate the right kinds of action and prevent disruptive forms of self-serving behavior at lower levels of social organization.”[16] He summarizes, “Selfishness beats altruism within groups. Altruistic groups beat selfish groups. Everything else is commentary.”[16]

As we shall see, not everyone agrees with that. ‘Between-group’ selection is possible, in principle, although it is weak compared to any which may happen ‘within-group’. Therefore, if we are to explain ‘for the good of the group’ behavior, then we must do it without group selection.

In fact, all models for explaining how cooperative and altruistic social behavior evolve, such as kin selection, reciprocity, and the selfish gene theory developed as alternatives to group selection.

 

 

Kin Selection

To explain altruism, we must find a way of natural selection to favor altruistic genes as in the theory of kin selection.[11] Kin selection is the evolutionary strategy that supports the reproductive success of an organism’s relatives at one’s cost. It is kin altruism based on inclusive fitness. Maynard Smith used the term ‘kin selection’ for the first time in 1964.[17]

Charles Darwin discussed this strategy in “The Origin of Species,” (1859)[18] arguing that a selection benefit to “the same stock” (kin) would allow the evolution of a trait while destroying an individual. Seventy years later, Fisher and Haldane figured out the mathematics of kin selection. [19][20] According to Maynard Smith, Haldane resumed the conclusion of his calculations by saying that, “he was prepared to lay down his life for eight cousins or two brothers.” [21]

Hamilton’s inclusive fitness rule states that kin selection increases the frequency of particular genes when the genetic relatedness of a recipient to a donor multiplied by the benefit to the recipient is greater than the reproductive cost to the donor.
rB>C
where r=the genetic relatedness of the recipient to the donor; B=the reproductive benefit gained by the recipient of the altruistic act; C=the reproductive cost to the donor.

Thus, kin selection is a special consequence of gene selection. The degree at which one should extend altruistic behavior toward others depends upon their coefficient of relationship. There are two ways to achieve this: (1) by kin recognition and/or (2) by living near one’s relatives (Hamilton 1964).

‘Kin selection’ is not the same as ‘group selection’ where a genetic trait may become widespread because it benefits the group as an entity.

 

 

Reciprocal Altruism

Reciprocal altruism is all behavior whereby a donor, with one act, reduces its fitness while increasing a recipient’s fitness, expecting subsequent payback. [22] Thus, the reduction is temporary. The mechanism is close to the “tit for tat” strategy in game theory.[23]

Reciprocal altruism, regarded as an instance of the prisoner’s dilemma, [24] is an evolutionary possibility if chances of meeting another reciprocal altruist are high enough, or if the game continues long enough.[22]

Reciprocal altruism, [22] is a possible way for natural selection to favor altruistic genes provided that:
(1) the individuals must have plenty of opportunities for reciprocation;
(2) they must be able to recognize each other as individuals;
(3) they must remember the obligations;
(4) and that they must be motivated to reciprocate.

Although this model seems to be evolutionarily unstable, evolutionary biologists found a way in which it would work.

There are striking parallels between altruistic behavior and exaggerated sexual ornaments. Both are costly in fitness and easy to detect, and both might be fitness signals turned evolutionarily stable by the handicap principle. The handicap principle suggests that honest communication is expensive to the signaler, therefore only affordable to special individuals. Receivers know that reliability must backup quality because lesser signallers couldn’t afford such extravagances. [25][26][27]

Then, we have the homogeneousness norm. Change in phenotype and functionality, caused by a non-silent mutation, will often stand out in a population. Thus, we can expect sexual individuals to prefer mates with the least number of unusual or minority features. As a result, and given enough time, a whole population will develop similar looks. In a similar way, the behavior repertoire of a population will become evolutionarily stable once it has developed as homogeneous as is the rule in most species. This includes any altruistic and cooperative features.[28]

 

 

Genetic Selfishness

When parents sacrifice themselves for their progeny, they are benefiting themselves since their offspring have 50% of their genes. Therefore, we can regard altruistic behavior as genetically selfish. That is Haldane’s extrapolation from ‘kin selection’.

For example, in wolves, Canis lupus lupus, [29] it pays off for each parent to sacrifice its life saving two of their progeny because this equals twice 50% of their own genes. However, such a calculation is more complicated than so if we take into account the cubs’ chances of survival without parental support. Giving their lives to save their youngsters when they are only one week old is a bad trade since they are unlikely to survive. In this instance, the best strategy is for the male and the female to protect themselves and keep the prospect of producing more offspring later.

This model explains why individuals sacrifice more for their progeny than for those of relatives or strangers, as we saw.[30] What the defenders of the selfish gene want to emphasize, besides agreeing with kin selection and inclusive fitness, is that the selection process happens at the gene level.[31][32]

In the genetic selfish model, the unit of replication is the gene, and the organism is the vehicle it uses and upon which selection acts directly. “Natural selection favours some genes rather than others not because of the nature of the genes themselves, but because of their consequences—their phenotypic effects.”[32]

Because genes are selfish, they will promote selfish behavior in the individuals they produce. ‘Selfish’ means, in this sense, to take care of itself as the first priority. Dawkins writes, “[…] gene selfishness will usually give rise to selfishness in individual behaviour. However, […] there are special circumstances in which a gene can achieve its own selfish goals best by fostering a limited form of altruism at the level of individual animals.”[32]

Gene selection soundly explains kin selection and eusociality. An organism acts altruistically, against its individual interests, because by supporting a related one to reproduce, genes help copies of themselves (or sequences with the same phenotypic effect) in other bodies to replicate. Thus, sometimes, ‘selfish’ actions by the genes lead to unselfish behavior by the organisms.

The survival of each gene, being replicators, depends on the survival of some others. Being a selfish gene does not imply that genes are entirely uncooperative. To be successful, a gene needs to cooperate with the other genes with which it shares a phenotype. Genes cooperate in building bodies because they all share the same exit route into the next generation. That’s their only way to survive. An organism, a body, is a vehicle for its genes, built up by a cooperative of genes.

Vehicles are important, but replicators are essential. Darwinian natural selection is still viable with no vehicles, only replicators, but not the other way around. In fact, when life began, there were probably no vehicles, only replicators.

A group is not a replicator because there is no ‘group pool’ (like there are ‘gene pools’). There is no metapopulation in which some groups are more successful than others at making replicas of themselves. And a group is not a vehicle because to qualify as one, all the genes in the same group would need to share the same exit route to the next group in the generational sequence.

Selection based upon groups is rare compared to selection on individuals, according to the selfish gene model. Researchers could not confirm simple interpretations of group selection, though more sophisticated ones proved to make accurate predictions in specific cases.[12]

E. O. Wilson writes that although the selfish-gene approach has been widely accepted “[…] Martin Nowak, Corina Tarnita, and I demonstrated that inclusive fitness theory, often called kin selection theory, is both mathematically and biologically incorrect.” He argues that group selection is a more realistic model of social evolution.[12][33[[34]

Dawkins rejects replacing ‘kin selection’ with ‘group selection.’ According to the selfish-gene model, viewing evolution as driven by the differential survival of whole groups of organisms is incoherent. He does not deny ‘group selection’. What he contends is that, even in the rare cases where it is not wrong, it is cumbersome, time-wasting, and distracting to what would otherwise be a straightforward understanding of what happens in natural selection.

Both Dawkins and Wilson agree that favorable genes are likely to prosper and replicate and that living in groups is helpful in some circumstances. The dispute arises mostly over definitions. They aim toward representing empirical facts with precision, but both use too broad definitions for ‘group,’ ‘group selection’ and ‘kin selection’. Thus, it becomes rather difficult to test their models.

We might find a consensus if we can simulate various evolutionary scenarios with narrower definitions, similar to what Markvoort et al. did for simulations of cellular group selection.[35]

 

 

A Workaround the Classic Approach

The altruism paradox, as we saw, goes down to the question: how can an altruistic gene, coding for the weaker altruistic phenotype, thrive in competition against a selfish one that codes for the fitter selfish phenotype?

Perhaps this is a confirmation that an answer cannot be better than the question it addresses. What if we are posing the wrong question and, hence, creating the paradox?

The thought of a distinct altruistic allele risking being overrun by a distinct selfish one is the basis for all the models we reviewed above.

As Dawkins writes, “‘cheat genes’ are spreading through the population while ‘sucker’ genes are driven to extinction.”[32] E. O. Wilson also summarized the problem in the same lines, “How might such a behavior evolve if the genes promoting it are at such a disadvantage in competition with genes that oppose it?” [36]

Now, suppose there are no two genotypes coding for the two competing phenotypes, selfishness and altruism. What if both phenotypes were due to one single genotype carrying both alternatives—no two distinct alleles? The Altruism Selfishness Plasticity (ASP) model suggests exactly that. Thus, let us for a moment set the prevailing Altruism Selfishness Allelomorphism (ASA) frame aside and explore what the ASP approach can add to the debate.

 

 

Altruistic and Selfish Phenotypes as Plastic Expressions of a Single Genotype

There is a way around the altruism paradox: to consider the altruistic and selfish phenotypes as plastic expressions of a single genotype. [37]

Phenotypic plasticity is the property of a genotype to produce different phenotypes in response to distinct environmental conditions.[38] There is nothing strange about that. We have known about phenotypic plasticity for quite a while. It denotes particular morphological and physiological changes in an organism—and behavior—as a response to a specific environment. Although biologists, to begin with, used the term to describe some developmental effects of a morphological character, they use it today to describe all phenotypic responses to environmental conditions, e.g., acclimatization and learning.[39]

In fact, we have plenty of data to support the ASP model. It is very plausible that no distinct genotype codes either the altruistic or the selfish phenotype, that they are rather plastic expressions of the same genotype, determined by particular environmental circumstances. And if this is true—the altruistic and selfish phenotypes being creations of a single genotype—then, they cannot be competing. To use Dawkins’ metaphor, the same genotype has the plasticity to express itself either as a ‘cheater’ or a ‘sucker’ depending on accidental contingencies.

Yakubu provides plenty of evidence in support of such a solution to the altruism paradox.[37] Let us review some of them.

 

The Social Hymenoptera

The social Hymenoptera are a favorite of biologists because they are highly social and haplodiploid. A honeybee, Apis mellifera, colony has three castes consisting of a queen, a few hundred males (drones), and thousands of non-reproductive females (workers). The queen’s role is to reproduce and the drone’s job is mating a queen. The workers, on the other hand, strive hard keeping the colony, foraging, and defending it from intruders. The reproductive queen is selfish, while the nonreproductive workers are perhaps the epitome of altruism.

Now, we can ask whether there are distinct alleles (genotypes) for altruism and selfishness in eusocial populations as the classical models of altruism presume. Evidence refutes that conclusively.

Whether a larva becomes a queen or a worker begins with where the egg is laid and continues with the received feeding.[40] The workers will nurse a larva in a queen cell with royal jelly.[41] On the other hand, if the larva is in a worker cell, they will feed it worker food. Amazingly enough, the former will become a queen and the latter a worker. We can say the eggs and the larva are totipotent [40] or multipotent (according to this author).

The honeybee provides us with even more staggering evidence. We can move eggs and larva from a queen cell to a worker cell, or the other way around, and if we do that within the first three days, they will develop as they are fed and as to where they reside.[40] We can thus infer that there is no genotype involved in the queen/worker distinction. Whether a bee becomes selfish (queen) or altruist (worker) depends only on environmental stimuli.

The caste differentiation happens via an epigenetic process where non-heritable factors contribute to gene expression. Queen and worker morphological forms both originate in the same genome. Royal jelly nourishment is the non-genetic determiner. The genes encoding the major royal jelly proteins present one of the clearest examples of a gene class acquiring new functions during the evolution of sociality.[42]

Researchers have sequenced the genome of the honeybee.[43] In fact, we know the particular genes in the honeybee whose differential expression results in queen and workers. Evans and Wheeler identified and characterized transcripts from seven genes that are expressed differently by the worker- and the queen-destined larvae at a critical point in their development. They are indeed genes with phenotypic plasticity.[44]

 

Altruistic Expression and Social Cues

Let us now consider non-eusocial social organisms. Trivers explained the Vampire bats altruistic behavior based on the ASA assumption.[22] However, we can explain that behavior as well without presuming the existence of distinct selfish/altruistic genotypes.

In vampire bats, hungry individuals often solicit food from those that are better fed. Sometimes, an individual obliges and regurgitates to a soliciting individual—and, sometimes, it steadfastly refuses to share food.

Trivers is right as to the reciprocity of this altruistic behavior. Whether a vampire bat shares blood depends on whether the solicitor has given the donor blood earlier or is likely to give blood to the donor later.[45] The same individual behaves selfish and altruistic depending on social circumstances. This conclusion is compatible with reciprocal altruism.[37] However, as genotypes do not change overnight, it is more plausible for the distinct phenotypes to be due to the plasticity of the same allele.

Male adult olive baboons, Papio anubis, help troupe members depending on whether he has earlier received help from those individuals or they are deemed likely of lending him help in the future.[46]

The behavioral strategy of efficient coercion also supports the plastic phenotypic deployment of a single genotype. In ten studied social insect species, social sanctions kept individuals altruistic in situations where they would have been selfish (Wenseleers and Ratnieks 2006).[47]

Altruists can become selfish. In white-fronted bee-eater, Meropsis bullockoides, young males do not set up nests because older males harass them. They become altruistic helpers instead. However, some of these helpers turn selfish once they build their own nests.[48]

In meerkat societies, the altruistic lower-ranking females become selfish if they attain a higher ranking, not only by breeding but also by killing the infants of other (by then) subordinate females.[49]

Social organisms may assume subordinate roles, not because of their altruistic genes, but because it is the best of the options, they have at the time.[50]

The reviewed examples seem to confirm the hypothesis of altruism being due to a single genotype with plastic phenotype options. An individual will behave altruistically under particular environmental conditions and will respond selfishly when those same cues are absent. As far as this author knows, no evidence has yet proved that only certain individuals can react altruistically or selfishly, given they act in the same scenario.[37]

 

 

An Example We All Know—Do Dogs Show Altruistic Behavior?

We know dogs for teaming together against rivals. That is widespread territorial behavior among pet dogs, strays and wild canids. They also defend their household, including humans and other animals. The females bring up and protect their pups at their own expense. These are all examples of behavior we can classify as altruistic. Even considering the difficulties inherent to the concept of altruism, we described, a prudent statement would be that dogs show reciprocal altruistic behavior under the right circumstances, as the ASP model describes.

 

 

Conclusion and Perspectives

The altruism paradox is perhaps among the most interesting in ethology (biology) and has, therefore, preoccupied many researchers. It poses highly pertinent questions to enhance our understanding of behavior, genetics and evolutionary theory. Scientists have proposed various models, some of which are more consensually accepted than others. Still, they have all contributed to increasing our global knowledge. The application of the ASP model to behavior promises perspectives far beyond the one we studied in this paper. Perhaps other behaviors that conventional approaches ascribe to distinct phenotypes are but phenotypic plastic expressions of a genotype.

 

References

[1] “Altruism.Merriam-Webster. Merriam-Webster, Incorporated. 2017. Retrieved 2017-10-10.
[2] Altruism, Based on the Random House Dictionary (2017). Dictionary.com Unabridged. Random House, Inc. 2017. Retrieved 2017-10-10.
[3] Slote, M.A. 1964. An Empirical Basis for Psychological Egoism, Journal of Philosophy 61: 530-537. Retrieved: 2017-10-10.
[4] Fox, M.W. 1972. Behaviour of Wolves, Dogs, and Related Canids. Harper & Row. ISBN 978-0060113216.
[5] Rogers, L.J.; Kaplan, G.T. 2003. Spirit of the Wild Dog: The World of Wolves, Coyotes, Foxes, Jackals & Dingoes. Allen & Unwin. ISBN 1865086738.
[6] “An amazing True Story—1/24/2008“. The David Sheldrick Wildlife Trust. 2008. Retrieved 2017-10-10.
[7] Darwin, C. 1871. The Descent of Man, and Selection in Relation to Sex (1st ed. ed.). London: John Murray. ISBN 0-8014-2085-7.
[8] Okasha, S. 2009. Biological altruism. In: Zalta EN (ed) The Stanford encyclopedia of philosophy, winter 2009 edn.
[9] Wynne-Edwards, V.C. 1962. Animal Dispersion in Relation to Social Behaviour. Edinburgh: Oliver & Boyd.
[10] Lorenz, K. 1963. Das sogenannte Böse zur Naturgeschichte der Aggression. Verlag Dr. G Borotha-Schoeler (“So-Called Evil, Toward a Natural History of Aggression”).
[11] Hamilton, W.D. 1964. The genetical evolution of social behaviour, I and II. Journal of Theoretical Biology. 7: 1–16, 17–32. doi:10.1016/0022-5193(64)90038-4.
of sociobiology. Q Rev Biol 82:327–348.
[13] Taylor, C., Nowak, M.A. 2007. Transforming the dilemma. Evolution, 61(10):2281–2292.
[14] Allen, B., Traulsen, A., Tarnita, C.E., Nowak, M.A. 2012. How mutation affects evolutionary games on graphs. J Theor Biol 299:97–105.
[15] Nowak, M.A. 2012. Evolving cooperation. J Theor Biol 299:1–8.
[16] Wilson, D.S. 2015. Does Altruism Exist? Culture, Genes, and the Welfare of Others. Yale UP. ISBN: 0300189494.
[17] Maynard Smith, J. 1964. Group selection and kin selectionNature. 201 (4924): 1145–1147. doi:10.1038/2011145a0.
[18] Darwin, C. 1859. The Origin of Species. Reprint: Modern Library, New York 1998.
[19] Fisher, R. 1930. The Genetical Theory of Natural Selection. The Clarendon Press Oxford. OCLC: 18500548.
[21] 1976 July 29, New Scientist, Section: Letters, Haldane, (Letter to the editor from J. Maynard Smith), Quote Page 247, Column 1 and 2, Published by New Science Publications, London; Now Published by Reed Business Information, UK.
[22] Trivers, R. L. 1971. The evolution of reciprocal altruism. Quarterly Review of Biology. 46: 35–57. doi:10.1086/406755.
[23] Rapoport, A. 1966, Two-Person Game Theory: The Essential Ideas. The University of Michigan Press. Ann Arbor, MI,
[24] Mérő, L. 1998. The Prisoner’s Dilemma. In: Moral Calculations. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1654-4_3.
[25] Fisher, R. 1930. The Genetical Theory of Natural Selection. The Clarendon Press Oxford. OCLC: 18500548.
[26] Zahavi, A. 1975. Mate selection—a selection for a handicap. Journal of Theoretical Biology. 53 (1): 205–214. PMID 1195756. doi:10.1016/0022-5193(75)90111-3.
[27] Zahavi, A. 1977. The cost of honesty (Further remarks on the handicap principle). Journal of Theoretical Biology. 67 (3): 603–605. doi:10.1016/0022-5193(77)90061-3.
[28] Koeslag, J.H. 1997. Sex, the Prisoner’s Dilemma Game, and the evolutionary inevitability of cooperation. Journal of Theoretical Biology. 189: 53–61. PMID 9398503. doi:10.1006/jtbi.1997.0496.
[29] Mech, L.D.; Boitani, L. 2010. Wolves: Behavior, Ecology, and Conservation. Chicago: University of Chicago Press. ISBN 0226516989.
[30] Abrantes, R. 2015. Ethology—The Study of Animal Behavior in the Natural Environment. Cambridge: Wakan Tanka Publishers.
[31] Williams, G.C. 1966. Adaptation and Natural Selection: a Critique of Some Current Evolutionary Thought. Princeton: Princeton University Press.
[32] Dawkins, R. 1976. The Selfish Gene. Oxford: Oxford University Press (1989). pp. 183–185. ISBN 0192860925.
[33] Nowak, M. A.; Tarnita, C. E.; Wilson, E. O. 2010. The evolution of eusociality. Nature. 466 (7310): 1057–1062. doi:10.1038/nature09205. ISSN 1476-4687.
[34] Wilson, E.O. 2012. The Social Conquest of Earth. Liveright. ISBN-10: 978-0871403636/0871403633.
[35] Markvoort, A.J.; Sinai, S., Nowak, M.A.. 2014. Computer simulations of cellular group selection reveal mechanism for sustaining cooperation. Journal of Theoretical Biology 357 (2014) 123–133.
[36] Wilson, E.O. 2005. Kin selection as the key to altruism: its rise and fall. Soc Res 72:159–166.
[37] Yakubu, Y. 2013. The Altruism Paradox: A Consequence of Mistaken Genetic Modeling. Biol Theory (2013) 8:103–113 DOI 10.1007/s13752-013-0120-4.
[38] Pigliucci, M. 2001. Phenotypic Plasticity: Beyond Nature and Nurture. Johns Hopkins University Press, Baltimore.
[39] Kelly, S.A., Panhuis, T.M., Stoehr, A.M. 2012. Phenotypic Plasticity: Molecular Mechanisms and Adaptive Significance. Comprehensive Physiology. pp. 1417–39. doi:10.1002/cphy.c110008. ISBN 978-0-470-65071-4. PMID 23798305.
[40] Winston, M.L. 1987. The Biology of the Honeybee. Harvard University Press, Cambridge, MA.
[41] Prete, F.R. 1990. The conundrum of the honey bees: one impediment to the publication of Darwin’s theory. J Hist Biol 23:271–290.
[42] Albert, S., Bhattacharya, D., Klaudiny, J., Schmitzova, J. & Simuth, J. 1999. The family of major royal jelly proteins and its evolution. J. Mol. Evol. 49, 290– 297.
[43] HGSC The Honeybee Genome Sequencing Consortium. 2006. Insights into social insects from the genome of the honeybee Apis mellifera.
Nature, 443, pages 931–949 (2006)
[44] Evans, J.D., Wheeler, D.E. 1999. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera.
Proc Natl Acad Sci USA 96:5575–5580.
[45] Wilkinson, G.S. 1984. Reciprocal food sharing in the vampire bat. Nature 308:181–184.
[46] Packer, C. 1977. Reciprocal altruism in olive baboons. Nature 265:441–443.
[47] Wenseleers T., Ratnieks, F.L.W. 2006. Enforced altruism in insect societies. Nature 444:50.
[48] Emlen, S.T., Wrege, P.H. 1992. Parent–offspring conflict and the recruitment of helpers among bee-eaters. Nature 356:331–333.
[49] Young, J.A., Clutton-Brock, T. 2006 Infanticide by subordinates influences reproductive sharing in cooperatively breeding meerkats. Biol Lett 2:385–387.
[50] Gadagkar, R. 1997. Survival strategies: cooperation and conflict in animal societies. Harvard University Press, Cambridge, MA.

Featured illustration: Anton Antonsen.

Featured Course of the Week

Canine Behavior Canine Behavior studies dog behavior in the natural and in the human environment, reviewing the behavior of the domestic dog and the related wild species. An important course for dog training, which is full of myths unsupported by scientific research.

Featured Price: € 168.00 € 98.00

 

Learn more in our course Ethology. Ethology studies the behavior of animals in their natural environment. It is fundamental knowledge for the dedicated student of animal behavior as well as for any competent animal trainer. Roger Abrantes wrote the textbook included in the online course as a beautiful flip page book. Learn ethology from a leading ethologist.

Ethology Course

“Animal Training My Way”—the “Abrantes Belly-Button Routine”

“The Belly-Button Routine” got its name from the fact that Roger Abrantes keeps his right hand holding the lead right in front of his belly-button. The only movement he makes with it it’s down and up, respectively when he stops and when he resumes walking after a stop. Be aware of where your right hand holding the lead is. We don’t want you or the dog to jerk it.

Notice how Professor Abranteswalks slowly forward and back, keeping a steady rhythm and changing direction very clearly, giving the dog a fair opportunity to follow him. Sometimes, he stops, and the dog must stop as well. Depending on what he ask it to do, it may sit, stand or down.

He calls this drill the kata* of dog training. Once you can do that to perfection, varying the form of the signals between hand, sound, body, and facial, you can teach your dog all you want, and a dog can learn.

Pay particular attention to:

1 – The few signals Abrantes uses.
2 – No repetitions of signals and no yelling.
3 – The consistency in the form of the signals. They are the same, every time, independently of whether he uses a sound, a hand or a body signal.
4 – The consistent and regular use of the semi-conditioned positive sound reinforcer: He says ‘dygtig.’** In SMAF: “!±sound”(dygtig). (You may have to turn your sound up to hear some of them because he whispers them).
5 – The immediate use of the inhibitor ‘ah’ when the dog shows an undesired behavior. In SMAF: [!-sound](ah).
6 – The eye contact he maintains with the dog when he asks it to do something.
7 – The few treats he uses (compared to the majority of trainers). He uses them strategically to reinforce some behaviors on specific circumstances.
8 – The contact he establishes with the dog during the performance of the drill.

To learn more about creating an effective communication and a sound relationship with your, please see our course Ethology and Behaviorism.

_________________

* Kata (型 or 形 literally: ‘form’) is Japanese and designates the detailed choreographed patterns of movements practiced either solo or in pairs. Many traditional Japanese arts use kata, such as theatre forms like kabuki, and schools of tea ceremony (chadō), but are most commonly known for their use in the martial arts.

** “Dygtig” [ˈdøgdi] is a Danish word and means “clever.” It is, apparently, a good sound as a reinforcer, Abrantes discovered many years ago.   speaker-1

Quiz (for students wishing to earn study credits)

“The Abrantes Belly-Button Routine” Video Quiz

You have five minutes to complete this quiz.

 

Mission Interspecies Contact—Creating a Relationship

Dogs react much better to our body language than to sound signals. We talk too much!

It all depends on your body language, not what you say. If you look at your dog all the time while you’re walking, you are assuming full responsibility for who follows whom. The dog will pull the lead, then—and rightly so, because it is your duty to follow, not your dogs. Yes, it is a lead, not a leash. You use it to lead the dog, not to leash it. Allowing the lead getting tight sometimes, does not equal to being a cruel dog owner. It amounts to allowing your dog to solve a problem for which it has more than enough intelligence to do.

One thing is your dog pulling the lead and feeling uncomfortable by doing it. A completely different matter is you pulling the lead. The former teaches the dog to keep an eye on you to avoid discomfort. The latter only teaches the dog that you are an unpredictable person one cannot trust.

Your body language is crucial. In the movie, did you notice how the simple and clear body signals and facial expressions, and moving rhythmically, appear to perform miracles?

To improve your communication and relationship with your dog, please see our course Ethology and Behaviorism.

Quiz (for students wishing to earn study credits)

"Mission Interspecies Contact—Creating a Relationship" Video Quiz

You have five minutes to complete this quiz.

 

The Importance of Body Language by Roger Abrantes

In this video, Roger Abrantes demonstrates the importance of a crystal clear, friendly, and self-confident body language. Our self-confidence affects our communication. The video shows the use of our knowledge of ethology at its best. We interact with the animals in ways, which are easy for them to understand and to respond appropriately.

Be prepared to work on yourself. Everything you do, matters. The way you do it, matters. The more you practice, the more subtle your signals will become. How you feel, and your level of self-confidence have a dramatic effect on the result. It’s all a question of attitude. Take your time. Think, relax and enjoy.

To learn more and get inspired, go to our course Ethology and Behaviorism based on the book “Animal Training My Way—The Merging of Ethology and Behaviorism” by Roger Abrantes.

Quiz (for students wishing to earn study credits)

"The Importance of Body Language by Roger Abrantes" Video Quiz

You have five minutes to complete this quiz.

 

Puppy on a Lead

In this video, Roger Abrantes shows his ‘kata’ for puppies. He walks forth and back teaching the puppy to follow, to stop when he stops, to sit, and to ‘down,’

Notice the ‘lead on the floor’ detail, stopping all movement and inducing the puppy to stop; eye contact; the correct timing of reinforcers; clear body language.

It’s all very straightforward when you apply the correct science to your training, a combination of Ethology and Behaviorism. To learn more, see our courses Ethology and Behaviorism and All About Puppies.

Quiz (for students wishing to earn study credits)

"Puppy on a Lead" Video Quiz

You have five minutes to complete this quiz.

 

Evolutionarily Stable Strategies and Behavior

Evolutionarily Stable Strategies and Behavior (DovesAndHawks).

Evolutionary biologists imagine a time before a particular trait emerges. Then, they postulate that a rare gene arises in an individual, and they ask what circumstances would favor the spread of that gene throughout the population. If natural selection favors the gene, then the individuals with the genotypes incorporating that particular gene will have increased fitness. A gene must compete with other genes in the gene pool, and resist any invasion from mutants, to become established in a population’s gene pool.

In considering evolutionary strategies that influence behavior, we visualize a situation in which changes in genotype lead to changes in behavior. By ‘the gene for sibling care’ we mean that genetic differences exist in the population such that some individuals aid their siblings while others do not. Similarly, by ‘dove strategy’ we mean that animals exist in the population that do not engage in fights and that they pass this trait from one generation to the next.

At first sight, it might seem that the most successful evolutionary strategy will invariably spread throughout the population and, eventually, will supplant all others. While this does occur, it is far from always being so. Sometimes, there is no single dominant strategy. Competing strategies may be interdependent in that the success of one depends upon the existence of the other and the frequency with which the population adopts the other. For example, the strategy of mimicry has no value if the warning strategy of the model is not efficient.

Game theory belongs to mathematics and economics, and it studies situations where players choose different actions in an attempt to maximize their returns. It is a good model for evolutionary biologists to approach situations in which various decision makers interact. The payoffs in biological simulations correspond to fitness—comparable to money in economics. Simulations focus on achieving a balance that evolutionary strategies would maintain. The Evolutionarily Stable Strategy (ESS), introduced by John Maynard Smith in 1973 (and published in 1982), is the most well known of these strategies. Maynard Smith used the hawk-dove simulation to analyze fighting and territorial behavior. Together with Harper in 2003, he employed an ESS to explain the emergence of animal communication.

Featured Course of the Week

Canine Behavior Canine Behavior studies dog behavior in the natural and in the human environment, reviewing the behavior of the domestic dog and the related wild species. An important course for dog training, which is full of myths unsupported by scientific research.

Featured Price: € 168.00 € 98.00

An evolutionarily stable strategy (ESS) is a strategy that no other feasible alternative can better, given that sufficient members of the population adopt it. The best strategy for an individual depends upon the strategy or strategies that other members of the same population adopt. Since the same applies to all individuals in that particular population, a mutant gene cannot invade an  ESS successfully.

The traditional way to illustrate this problem is by simulating the encounter between two strategies, hawk and dove. When a hawk meets a hawk, it wins on half of the occasions, and it loses and suffers an injury on the other half. Hawks always beat doves. Doves always retreat against hawks. Whenever a dove meets another dove, there is always a display, and it wins on half of the occasions. Under these rules, populations of only hawks or doves are no ESS because a hawk can invade a population made up entirely of doves, and a dove can invade a population of hawks only. Both would have an advantage and would spread in the population. A hawk in a population of doves would win all contests, and a dove in a population of hawks would never get injured because it wouldn’t fight.

However, it is possible for a mixture of hawks and doves to provide a stable situation when their numbers reach a certain proportion of the total population. For example, with payoffs as winner +50, injury -100, loser 0, display -10, a population comprising hawks and doves (or individuals adopting a mixed strategy of alternating between playing hawk and dove strategies) is an ESS whenever 58,3% of the population are hawks and 41,7% doves; or when all individuals behave at random as hawks in 58,3% of the encounters and doves in 41,7%. The percentages (the point of equilibrium) depend on costs and benefits (or the pay-off, which is equal to benefits minus costs).

Evolutionarily stable strategies are not artificial constructs. They exist in nature. The Oryx, Oryx gazella, have sharp pointed horns, which they never use in contests with rivals, except in a ritualised manner, and only in defense against predators. They play the dove strategy. They hawk strategy is rarely seen in nature except when competing for mating partners. However, up to 10% per year of Musk Ox, Ovibos moschatus, adult males die because of injuries sustained while fighting over females.

An ESS is a modified form of a Nash equilibrium. In most simple games, the ESSes and Nash equilibria coincide perfectly, but some games may have Nash equilibria that are not ESSes. Furthermore, even if a game has pure strategy Nash equilibria, it might be that none of those pure strategies are ESSes. We can prove both Nash equilibria and ESS mathematically (see references).

Peer-to-peer file sharing is a good example of an ESS in our modern society. Bit Torrent peers use Tit-for-Tat strategy to optimize their download speed. They achieve cooperation exchanging upload bandwidth with download bandwidth.

Evolutionary biology and sociobiology attempt to explain animal behavior and social structures (humans included), primarily in terms of evolutionarily stable strategies.

References

Featured image: The traditional way to illustrate Evolutionarily Stable Strategies is the simulation of the encounter between two strategies, the hawk and the dove.

Learn more in our course Ethology. Ethology studies the behavior of animals in their natural environment. It is fundamental knowledge for the dedicated student of animal behavior as well as for any competent animal trainer. Roger Abrantes wrote the textbook included in the online course as a beautiful flip page book. Learn ethology from a leading ethologist.

Ethology Course

Do Animals Have Feelings?

Do Animals Have Feelings?

Do Animals Have Feelings? Attributing human characteristics to non-human animals is wrong — no doubt about that. Furthermore, it seems to me, that the opposite (of anthropomorphism) is as wrong, that is, to say that animals cannot be happy or sad because these are human emotions. It is true that we can’t prove whether an animal is happy or sad, but we can’t prove either that it can’t. As Carl Sagan wrote, “Absence of evidence is not evidence of absence.” We know nothing about one or the other. All we can see is behavior, and the rest is guesswork.

The argument for anthropomorphism is valid enough: if I can’t prove (verify) something, I’d better disregard it (at least scientifically); and I can’t prove that my dog is happy, sad, or loves me.

Then again, we are not better off with our spouses, children, friends, not to speak of strangers. What do we know about their feelings and emotions? We can’t prove either that they are happy, sad, or love us. We presume it (and we are often wrong) because we compare their behavior with our own when we are in notably similar states of mind.

You may argue that there is a difference between comparing humans with one another, and humans with other animals. We, humans, are, after all, members of the same species. It appears to make sense to presume that if I am sad when I show a particular behavior, then you are also unhappy when you show similar behavior. You may have a point, even though not a very scientific one—and certainly not always. Cultural diversities play us, as you know, many tricks. Some expressions cover entirely different emotions in distinct cultures.

Featured Course of the Week

Canine Behavior Canine Behavior studies dog behavior in the natural and in the human environment, reviewing the behavior of the domestic dog and the related wild species. An important course for dog training, which is full of myths unsupported by scientific research.

Featured Price: € 168.00 € 98.00

It appears that our attributing feelings to others, e.g., being happy or sad, is not very scientific. It is more a case of empathy, or being able to set ourselves in the place of the other individual. Researchers have uncovered that other primates besides humans, as well as other mammals, show empathy. Recent studies have found that honeybees are capable of indicating a kind of emotional response; and honey-bees, as invertebrates, account for about 95% of all species.

It seems the only reason for my inference that someone feels something particular is by resemblance. If so, I fail to see why we cannot accept that animals (at least some species) also can be happy, sad, etc. The inter-species comparison is a more distant one, but are we not, ultimately, sons and daughters of the same DNA?

If we can’t prove that everyone experiences emotions similarly enough to allow us to attribute them to a particular category, it seems to me to make no sense to accept a claim based on the fact that because humans know of love, happiness, and sadness, other animals (absolutely) don’t.

Again, “A difference of degree, not of kind,” as Charles Darwin wrote, appears to me to be a prudent and wise approach; and to reserve further judgment until we can prove it.

Therefore, if it is a sin to attribute human characteristics to other animals, it must also be a sin to say that because we do, they don’t, because we can, they can’t. The first is, as we know, called anthropomorphism; the second, I will coin anthropodimorphism.

So, if you ask me, “Can my dog be happy or sad?” I will ask you back, “Can you?” If you answer, “Yes, of course,” then I’ll say, “If that is the case, so can your dog (probably) albeit differently from you—a difference of degree, not of kind.”

Bottom-line: don’t assume others feel the same as you, not your fellow humans, not other animals. Don’t assume either that they don’t, because they might.

Life is a puzzle, enjoy it!

Featured image: Don’t assume others feel the same as you, not your fellow humans, not other animals. Don’t assume either they don’t, because they might.

Learn more in our course Ethology and Behaviorism. Based on Roger Abrantes’ book “Animal Training My Way—The Merging of Ethology and Behaviorism,” this online course explains and teaches you how to create a stable and balanced relationship with any animal. It analyses the way we interact with our animals, combines the best of ethology and behaviorism and comes up with an innovative, yet simple and efficient approach to animal training. A state-of-the-art online course in four lessons including videos, a beautiful flip-pages book, and quizzes.

ATMWCourse

Laughter is the shortest distance…

LaughterSpecies


As you have figured out by now, I enjoy finding proof that humans are not that different from other forms of life. We share many characteristics with the other living creatures on our blue planet. Today, I have one more example for you—laughter.

Laughing is an involuntary reaction in humans consisting of rhythmical contractions of the diaphragm and other parts of the respiratory system. External stimuli, like being tickled, mostly elicit it. We associate it primarily with joy, happiness, and relief, but fear, nervousness, and embarrassment may also cause it. Laughter depends on early learning and cultural factors.

The study of humor and laughter is called gelotology (from the Greek gelos, γέλιο, meaning laughter).

Chimpanzees, gorillas, bonobos, and orangutans display laughter-like behavior when wrestling, playing, or tickling. Their laughter consists of alternating inhalations and exhalations that sound to us like breathing and panting. A study comparing the acoustics of tickle-induced vocalizations from infant and juvenile orangutans, gorillas, chimpanzees, bonobos, and human infants revealed the similarities and differences among the five species. We have strong evidence that tickling-induced laughter is similar in great apes and humans and support the phylogenetic continuity from nonhuman displays to human emotional expressions. (1)

Rats display long, high frequency, ultrasonic vocalizations during play and when tickled. We can only hear these chirping sounds with proper equipment. They are also ticklish, as are we. Particular areas of their body are more sensitive than others. There is an association between laughter and pleasant feelings. Social bonding occurs with the human tickler, and the rats can even become conditioned to seek the tickling. (2)

Dolphins make sounds consisting of short bursts of pulses, followed by a whistle. They only make these noises during play-fighting and never during aggressive confrontations. We presume that these sounds function to emphasize playfulness and prevent episodes from escalating into actual agonistic displays—the equivalent of laughter. (3)

A dog’s laughter sounds similar to a regular pant. A sonograph analysis of this panting behavior shows that the variation of the bursts of frequencies is comparable with the laughing sound. When we play this recorded dog-laughter to dogs in a shelter, it can promote play, social behavior and decrease stress levels. (4)

Victor Borge once said, “Laughter is the shortest distance between two people.” Maybe, it is simply the shortest distance between any two living creatures.

Keep laughing, my friends!

References

(1) Ross, M.D., Owren, M.J. & Zimmermann, E. (2009) “Reconstructing the Evolution of Laughter in Great Apes and Humans.” Current Biology, Vol 19, Is. 13, P1106-1111, JULY 14, 2009. DOI:https://doi.org/10.1016/j.cub.2009.05.028.

(2) Panksepp, J. & Burgdorf, J. (2003) “Laughing rats and the evolutionary antecedents of human joy?” Physiology & Behavior 79(3):533-47. DOI: 10.1016/S0031-9384(03)00159-8 

(3) C. Blomqvist, C., Mello, I. & Amundin, M. (2010) “An Acoustic Play-Fight Signal in Bottlenose Dolphins (Tursiops truncatus) in Human Care.” Aquatic Mammals. Vol. 31, Iss. 2, Pages 187-194). DOI: 10.1578/AM.31.2.2005.187.

(4) Simonet, P. Versteeg, D. & Storie, D. (2005) Dog-laughter: Recorded playback reduces stress-related behavior in shelter dogs” ResearchGate, Jan. 2005.

 

 

 

 

Featured image: We laugh, but we are not the only ones.

Featured Course of the Week

Canine Behavior Canine Behavior studies dog behavior in the natural and in the human environment, reviewing the behavior of the domestic dog and the related wild species. An important course for dog training, which is full of myths unsupported by scientific research.

Featured Price: € 168.00 € 98.00

 

Learn more in our course Ethology. Ethology studies the behavior of animals in their natural environment. It is fundamental knowledge for the dedicated student of animal behavior as well as for any competent animal trainer. Roger Abrantes wrote the textbook included in the online course as a beautiful flip page book. Learn ethology from a leading ethologist.

Ethology Course

Body Language with Insecure Dog

Our body language affects the effectiveness of our communication with our animals, as we have seen multiple times.
In this video, we look closer at the importance of our body language when dealing with a dog demonstrating insecurity, on the verge of impeding it of interacting with others.
We’ll need to use all our knowledge of ethology, interacting with the dog in ways, which are easy for it to understand, and, therefore, show appropriate responses.
Notice, that the differences between working with a dog with an average degree of self-confidence and an insecure dog are minor.
Often, we increase the level of insecurity of the dog precisely because we treat it as such. We help too much. The animal never gets a chance to solve the problems by itself and learn. Wrong behavior is still wrong behavior. What we must do is to increase the difficulty of what we ask the dog to do more gradually, in small steps.
At one time, we’ll have to “force” an error to teach the dog to cope with that as well, without showing strong emotional responses.
As always, be prepared to work on yourself. Everything you do matters. The way you do it, matters. The more you practice, the more subtle your signals will become. How you feel, and your level of self-confidence have a dramatic effect on the result. It’s all a question of attitude. Take your time.

To learn more, please go to our course Ethology and Behaviorism.

Quiz (for students wishing to earn study credits)

"Body Language with Insecure Dog" Video Quiz

You have five minutes to complete this quiz.

 

Ethology Institute