Are You Teaching Your Pet Superstitious Behavior?

DogBarking3

Warning: superstitious behavior is easy to create and extremely difficult to extinguish.

Superstitious behavior is behavior we erroneously associate with particular results. Animals create superstitions as we do. If by accident, a particular stimulus and consequence occur a number of times temporarily close to one another, we tend to believe that the former caused the latter. Both reinforcing and inhibiting consequences may create superstitious behavior. In the first case, we do something because we believe it will increase the odds of achieving the desired result (we do it for good luck). In the second case, we do not do something because we do not want something else to happen (it gives bad luck).

In 1948, B.F. Skinner recorded the superstitious behavior of pigeons making turns in their cages and swinging their heads in a pendulum motion. The pigeons displayed these behaviors attempting to get the food dispensers to release food. They believed their actions were connected with the release of food, which was not true because the dispensers were automatically programmed to dispense food at set intervals.

Dog barks at door.

Some cases of CHAP (Canine Home Alone Problems) could be superstitious behavior. The dog believes that if it barks long enough at the door, someone will open it because it has happened before. Many CHAP cases are not even remotely connected with anxiety as the dog owners erroneously presume.

Superstitious behavior is extremely resistant to extinction. Skinner found out that some pigeons would display the same behavior up to 10,000 times without reinforcement. Displaying a behavior expecting a reinforcer, and receiving none, increases persistence. It’s like we (as well as other animals) feel that if we continue long enough the reinforcement will follow sooner or later.

As always, being an evolutionary biologist, the first question that comes to my mind is, “what conditions would favor the propagation of superstitious behavior?” Making correct associations between events confers a substantial advantage in the struggle for survival. That is what understanding (or adapting to) one’s environment means. The benefits of getting one association right outweigh the costs of making several wrong associations, so much that natural selection favors those who tend to make associations rather than those who do not—and that’s why superstitious behavior is highly resilient to extinction.

CheeringDiploma
Happy Golden
Earn your Diploma in Animal Behavior and Training paying your fees in monthly installments
CPDT: EUR 110 — CACE: EUR 132 — CAAE: EUR 214
Start earning your diploma from Ethology Institute Cambridge, today!
Click here to read more and select your favorite program. Then choose, "pay by installments."

The Function of Champing Behavior

Dogs Champing And Yawning

Champing behavior has a pacifying function—attempting to turn an unpleasant situation into a pleasant one. The dog to the left champs while the one to the right yawns.

Champing (or chomping) is a noisy chewing motion, despite there being nothing to chew. This behavior is connected with friendliness, pacifying of an opponent, insecurity, or submission depending on degree and context.

There is an element of pacifying behavior in all forms of champing. Pacifying behavior (Latin pacificare, from pax = peace and facere, facio = to make) is all behavior with the function of decreasing or suppressing an opponent’s aggressive or dominant behavior or restoring a state of tranquility. Licking, nose poking, muzzle nudging, pawing, yawning, and twisting are common pacifying behaviors that dogs offer one another and us. Champing is a behavior widely used by canines in situations ranging from mild unease to more severe concern.

Champing is one of the first sounds that puppies hear—their sibling’s suckling. It is, therefore, a sound associated with satisfaction. Redirection of the champing behavior assumes later a pacifying function—attempting to turn an unpleasant situation into a pleasant one. The pups originally connect champing with the appeasement of hunger.

Jane Goodall And Chimp 1

Jane Goodall used to break a branch and pretend to chomp on it to pacify chimpanzees showing some unease (photo by Derek Bryceson/National Geographic Creative).

Champing is a straightforward and efficient way to show friendliness towards a dog. In fact, this behavior appears to have a relaxing effect on most mammals. Newborn mammals suckle and connect sucking sounds (chomping) with pleasant and desirable consequences. Jane Goodall points out that she used to break a twig and pretend to champ it to pacify chimpanzees showing some unease. I use chomping often when in the presence of dogs and horses showing some kind of distress.

CheeringDiploma
Happy Golden
Earn your Diploma in Animal Behavior and Training paying your fees in monthly installments
CPDT: EUR 110 — CACE: EUR 132 — CAAE: EUR 214
Start earning your diploma from Ethology Institute Cambridge, today!
Click here to read more and select your favorite program. Then choose, "pay by installments."

Should We Reinforce the Effort or the Result?

 

If you ask, “should we reinforce the effort or the result?” you are liable to get as many answers supporting the one opinion as for the other. Supporters of the effort system sustain that reinforcing results creates emotional problems when one doesn’t succeed and decreases the rate of even trying. Advocates of the result method defend that reinforcing the effort encourages sloppiness and cheating.

I shall argue in the following for and against both theories and prove that it is not a question of either/or, rather of defining clearly our criteria, processes, and goals.

 

Effort or Result

Learning is a complex process The main difficulty in some learning processes is to reinforce the right behavior at the right time, which bad teachers, bad parents and bad trainers do not master. We must reinforce the process because of its emotional consequences. The dog and the child must accept the challenge, want to be challenged, to be able to give their best in solving the problem, not giving up.

 

I shall compare the learning of some skills in dogs and humans because the principles are the same. The difference between them and us is one “of degree, not of kind,” as Darwin put it.

I will use SMAF to describe some processes accurately where I find it advantageously. If you are not proficient in SMAF, and you’d like to be, please read “Mission SMAF— Bringing Scientific Precision Into Animal Training.”

The main difficulty in some learning processes is to reinforce the right behavior at the right time, which bad teachers, bad parents and bad trainers do not master (bad means inefficient, and it is not a moral judgment).

Much of my personal work with dogs (and rats and Guinea Pigs) is and has been detection work, mainly narcotics and explosives, but also person search, tobacco and other. One of the first signals I teach the animals is a disguised reinforcer.

With dogs, I use the sound ‘Yes’ (the English word). The signal part of this signal/reinforcer means, “continue what you’re doing,” and the reinforcer part, “we’re OK, mate, doing well, keep up.” That is a signal that becomes a reinforcer: Continue,sound(yes) that becomes a “!+sound”(yes).

The difference between the most used “!±sound”(good-job) and “!+sound”(yes) is that the former is associated and maintained with “!-treat”(small food treat) and “!-body(friendly body language); and the latter with a behavior that will eventually produce “!-treat”. The searching behavior does not provide a treat, but continuing searching will eventually (find or no find). That is why “!+sound”(yes) is a disguised Continue,sound(yes) or the other way around.

Why do I need this interbreeding between a signal and a reinforcer?
Because the signal ‘Search’ (Search,sound) does not mean ‘Find the thing.’ Sometimes (most of the time) there’s nothing to find, which is good for all of us (airports and the likes are not that full of drugs and explosives).

English Springer Spaniel On The Trail

Search’ means “Go and find out whether there is a thing out there.” The signal ‘Search’ (Search,sound) does not mean ‘Find the thing.’ Sometimes (most of the time) there’s nothing to find.

 

So, what does Search,sound mean? What am I reinforcing? The effort?
No, I’m not. We have to be careful because if we focus on reinforcing the effort, we may end up reinforcing the animal just strolling around, or any other accidental or coincidental behavior.

I am still reinforcing the result. ‘Search’ means “Go and find out whether there is a thing out there.” ‘Thing’ is everything that I have taught the dog to search and locate for me, e.g. cocaine, hash, TNT, C4.

“Go and find out whether there is a thing out there” leaves us with two options equally successful: ‘here’ and ‘clear.’ When there is a thing, the dog answers ‘here’ by pointing at its apparent location (I have taught it that behavior). When there is no thing, that is exactly what I want the animal to tell me: the dog answers ‘clear’ by coming back to me (again because I have taught it that). We have two signals and two behaviors:

Thing,scent => dog points (‘here’ behavior).
∅Thing,scent => dog comes back to me (‘clear’ behavior).

The signals are part of the environment. I do not give them, which does not matter: a signal (SD) is a signal (1). An SD is a stimulus associated with a particular behavior and a particular consequence or class of consequences. When we have two of them, we expect two different behaviors and when there is none, we expect no behavior. What fools us, here, is that in detection work we always have one and only one SD, either one or the other. It is impossible to have none. Either we have a scent, or we don’t, which means that either we have Thing,scent or we have ∅Thing,scent, requiring two different behaviors as usually. The one SD is the absence of the other.

Traditionally, we don’t reinforce a search that doesn’t produce a positive indication. To avoid extinguishing the behavior, we use ‘controlled positive samples’ (a drug or an explosive, we know it is there because we have placed it there to give the animal a possibility to obtain a reinforcer).

That is a correct solution, except that it teaches the dog that the criterion for success is ‘to find’ and not ‘not to find,’ which is not true. ‘Not to find’ (because there is nothing) is as good as ‘to find.’ The tricky part is, therefore, to reinforce the ‘clear’ and how to do it to avoid sloppiness (strolling around) and cheating.

Let us analyze the problem systematically.

The following process does not give us any problems:

Search,sound => Dog searches => “!+sound”(yes) or Continue,sound(yes) => Dog searches => Dog finds thing (Thing,scent) => Dog points (‘here’ behavior) => “!±sound”(good-job) + “!-treat”.

No problem, but what, then, when there is no thing (∅Thing,scent)? If I don’t reinforce the searching behavior, I might extinguish it. In that situation, I reinforce the searching with “!+sound”(yes):

“Search,sound” => Dog searches => “!+sound”(yes) => Dog searches => ∅Thing,scent => Dog comes back to me (‘clear’ behavior) => “!±sound”(good-job). */And I can also give “!-treat”*/

Looks good, but it poses us some compelling questions:
How do I know the dog is searching versus strolling around (sloppiness)?
How do I know I am reinforcing the searching behavior?

If I reinforce the dog coming back to me, then, next time I risk that the dog will take a quick round and get to me right away: that is the problem. I want to dog to return to me only when it finds nothing (the same as didn’t find anything).

Problems:
To reinforce the searching behavior.
To identify the searching behavior versus strolling around (sloppiness). How can I make sure that the dog always searches and never just rambles around?

Solution:
Reinforcing the searching behavior with “!+sound”(yes) works. OK.

Remaining problem:
I have to reinforce the ‘clear’ behavior (coming back to me), but how can I make sure that the dog always searches and never strolls around (avoid sloppiness)?
How can I make sure that the dog has no interest in being sloppy or cheating me?

Solution:
To teach the dog that reinforcers are available if and only if:
1. The dog finds the thing. Thing,scent => Dog sits => “!±sound”(good-job) + “!-treat”.
2. The dog does not ever miss a thing. ∅Thing,scent => Dog comes back to me => “!±sound”(good-job) + “!-treat”.

Training:
I teach the dog gradually to find things until I reach a predetermined low concentration of the target scent (my DLO—Desired Learning Objective). In this phase of training, there is always one thing to find. After ten consecutive successful finds (my criterium and quality control measure), all producing reinforcers for both the searching (“!+sound”(yes)) and the finding (“!+sound” + “!-treat”), I set up a situation with no thing (∅Thing,scent). The dog searches and doesn’t find anything. I reinforce the searching and the finding (no-thing) as previously. Next set-up, I make sure there is a thing to find, and I reinforce both searching and finding.

I never reinforce not-finding a thing that is there, or finding a thing that is not there (yes, the last one is an apparent paradox).

Consequence: the only undesirable situations for a dog are: (1) not-finding a thing that is there (the dog did not indicate Thing,scent), or (2) indicating a thing that is not there (the dog indicates ∅Thing,scent).

(1) Thing,scent => Dog comes back to me (‘clear’ behavior) => [?±sound] + [?-treat].
Or:
(2) ∅Thing,scent => Dog points (‘here’ behavior) => [?±sound] + [?-treat].

That is (negatively) inhibiting negligence, but since it proves to increase the intensity of the searching, we cannot qualify it as an inhibitor. Therefore, we call it a non-reinforcer: “∅±sound”, “∅-treat”.
In the first case:

Thing,scent => Dog comes back to me => [?±sound] + [?-treat].
Becomes:
Thing,scent => Dog comes back to me => “∅±sound”, “∅-treat”.
Then:
Thing,scent => Dog comes back to me => “∅±sound”, “∅-treat” => Dog searches (more intensively) => Thing,scent => Dog points (‘here’ behavior) => “!±sound” + “!-treat”.

In the second case, I have to be 100% sure that there is indeed no-thing. The training area must be free of any scent remotely similar to the scent we are training (Thing,scent). Particularly in the first phases of the training process, this is an imperative, and a trainer who misses that is committing major negligence.

Should the dog, nevertheless, show ‘here’ for ∅Thing,scent, then we can use the same procedure as above:

∅Thing,scent => Dog shows ‘here’ behavior => “∅±sound”, “∅-treat” => Dog searches (more intensively) => ∅Thing,scent => Dog comes back to me (‘clear’ behavior) => “!±sound” + “!-treat”.

What if later the dog doesn’t find a thing that is there in a lower concentration than the one I used for training, or masked by other scents?

No problem—that is not the dog’s fault. I didn’t train it for it. The dog doesn’t know that it is committing a mistake by giving me a (wrong) ‘clear.’ As far as the dog is concerned, the room is clear. For the dog, it is a ‘clear’: ∅Thing,scent => Dog comes back to me => “!±sound” + “!-treat”. The dog was not strolling around and is not cheating me.

Comparing to humans:
I reinforce the behavior of the child trying to solve a math problem. Yes, we must always reinforce (or inhibit) a behavior, not the individual. “Well done, but you got it wrong because…” The solution may be incorrect, but the method was correct. Then, it is all a question of training. The ‘wrong’ will be eliminated with more or better training. Maybe, it was caused by a too abrupt increase in the difficulty curve of the problem (which is the teacher’s problem). We are not reinforcing trying; we are reinforcing the correct use of a method (a desired process).

Why reinforce the process?
We must reinforce the process because of its emotional consequences. The dog and the child must accept the challenge, must want to be tried and to be able to give their best in solving a problem.

Are we reinforcing the effort rather than the success?
No, we are not. Reinforcing the effort rather than the result can and will lead to false positives. The animal indicates something that it is not there because it associates the reinforcer with the behavior, not the thing. Children give us three-four consecutive, quick and wrong answers if we reinforce the trying, not the process (thinking before answering).
We reinforce the result (success) only. When the dog doesn’t find because there’s nothing to find, that is a success. When the dog doesn’t find because the concentration was too low, that is a success because ‘too low’ is here equal to ‘no-thing.’ When the child gets it wrong, it is because the exercise exceeded the actual capacity of the child (not trained to that). No place to hide for trainers, coaches, teachers, and parents.

We are still reinforcing success and exactly what we trained the dog and the child to do. We don’t say to the child, “Well, you tried hard enough, good.” We say, ” Well done; you did everything correctly. You just didn’t get it right because you didn’t know that x=2y-z and you couldn’t know it.” Next time, the child gets it right because now she knows it; and if not, it is because x=2y-z exceeds the capacity of that particular child at that particular moment, in which case, there’s nothing to do about it.

The same with the dog: the dog (probably) will not indicate 0.01g of cocaine because I trained it to go as low as 0.1g. When I reinforce the dog’s ‘clear,’ I say, “Well done, you did everything correctly, you just didn’t get it right because you didn’t know that 0.01g cocaine is still the thing.” Now, I train the dog that ‘thing’ means ‘down to 0.01g cocaine’ and either the dog can do it or it cannot. If it can, good. If it cannot, there’s nothing we can do about it.

Conclusion:
We reinforce result, success, not the effort, not trying. We must identify success, have clear criteria for success, plan a progressive approach to our goal, a gradual increase in difficulties. We must be able to recognize limits and limitations in ourselves, in the animal species with which we work, in the individuals we tutor, in the particular skill we teach. We must know when we cannot improve a skill any further and when someone, human or not, cannot give us more than what we get; and be satisfied with that.
________
Footnotes
1 Strictly speaking, the scent, which the detection dog searches, is not a signal, but a cue, because it is not intentional. In this context, however, it is and SD because we have conditioned it to be so, and we can, therefore, call it a signal. Please, see “Signal and Cue—What is the Difference?

Special OfferHappy Golden
FEATURED Course of the week—limited OFFER
at a reduced price—ONLY until Sunday. Click here.

Laughter is the shortest distance…

 

Laughter

We laugh, but we are not the only ones.

As you have figured out by now, I enjoy finding proof that humans are not that different from other forms of life. We share many characteristics with the other living creatures on our blue planet. Today, I have one more example for you—laughter.

Laughing is an involuntary reaction in humans consisting of rhythmical contractions of the diaphragm and other parts of the respiratory system. External stimuli, like being tickled, mostly elicit it. We associate it primarily with joy, happiness, and relief, but fear, nervousness, and embarrassment may also cause it. Laughter depends on early learning and cultural factors.

The study of humor and laughter is called gelotology (from the Greek gelos, γέλιο, meaning laughter).

Chimpanzees, gorillas, bonobos, and orangutans display laughter-like behavior when wrestling, playing or tickling. Their laughter consists of alternating inhalations and exhalations that sound to us like breathing and panting.

Rats display long, high frequency, ultrasonic vocalizations during play and when tickled. We can only hear these chirping sounds with proper equipment. They are also ticklish, as are we. Particular areas of their body are more sensitive than others. There is an association between laughter and pleasant feelings. Social bonding occurs with the human tickler, and the rats can even become conditioned to seek the tickling.*

A dog’s laughter sounds similar to a regular pant. A sonograph analysis of this panting behavior shows that the variation of the bursts of frequencies is comparable with the laughing sound. When we play this recorded dog-laughter to dogs in a shelter, it can contribute to promoting play, social behavior, and decrease stress levels.*

Victor Borge once said, “Laughter is the shortest distance between two people.” Maybe, it is simply the shortest distance between any two living creatures.

__________

* Panksepp & Burgdorf, 2003, ‘Laughing’ rats and the evolutionary antecedents of human joy?; Simonet, Versteeg & Storie, 2005, Dog-laughter: Recorded playback reduces stress related behavior in shelter dogs.

Special OfferHappy Golden
FEATURED Course of the week—limited OFFER
at a reduced price—ONLY until Sunday. Click here.
"Ethology" by Roger Abrantes

If animal behavior fascinates you, you will enjoy "Ethology—The Study of Animal Behavior in the Natural Environment," the book and course by ethologist Roger Abrantes.
Enrolling for this course puts you in direct contact with the author to whom you can pose any question while you complete your coursework. Click here to read more and enroll.

Signal and Cue—What is the Difference?

In the behavioral sciences, there is some confusion about the meaning of the terms signal and cue (as with so many other terms) and some authors use it interchangeably. To make it even more difficult, communication theory also uses the same terms with slightly different meanings and in the theatre and movies world a ‘cue’ is actually a ‘signal.’

Male lion and cub

Secondary sexual traits, as the mane of the male lion, are powerful cues (Photo by Luca Galuzzi via Wikipedia).

However, in behavioral sciences, the general consensus (see references below) is that signal and cue have the following meanings.

signal is a perceivable behavior or feature that has evolved and has acquired the specific characteristic of conveying information about the signaler or the signaler’s environment. Information (communication) changes the behavior or the beliefs of the receiver.

This definition of signal implies that if a signal changes the behavior of an organism, this change of behavior must be profitable to both sender and receiver more often than not, or otherwise, signalers would cease to send the signal and receivers would cease to respond. This definition distinguishes, in principle, a signal from coercion, although some signals may be coercive, e.g. threats.

In general, signals must be honest and reliable, or otherwise they cease to have any effect (receivers don’t behave appropriately) and they undermine communication (honest senders will not benefit from sending the signals). However, some signals can tolerate a certain degree of dishonesty, all depending on the costs and benefits for all parties. H. W. Bates discovered in 1861 that some (palatable) butterflies had an advantage in mimicking (Batesian mimicry) poisonous butterflies, which is detrimental to the poisonous butterflies inasmuch as it turns their signals of unpalatability less reliable. On the other side, some species use the same signals to convey the same information and they all benefit from it (Mullerian mimicry).

cue is any feature that an organism can use as a guide to display a particular behavior or series of behaviors. The classical example is the mosquito seeking a mammal to bite and flying up wind when it detects CO2. The CO2 is a cue for the mosquito, but it is surely not a signal sent by the mammal, which would prefer to remain undetected and not be bitten. Intentionality is the key element to distinguish signals from cues.

A cue is a regularity, a pattern that either is permanently ‘on,’ or is ‘on’ and ‘off” depending on specific conditions, e.g. a rock, a tree, or the position of the sun in the sky cues us of directions, and dark clouds cues us of impending rain. The rock, the tree, the sun and the clouds are not there to give us information, but they do if we interpret them correctly. A signal is more malleable, more intentional and we can turn it ‘on’ and ‘off’ in response to relevant cues in the environment, e.g. the warning cry that many species (signal) issue in response to the appearance (cue) of a feared predator.

Cues are traits or actions that benefit the receiver exclusively. The sun and the rock do not profit from us getting our bearings. When a mouse by accident makes a rustling sound in the leaves and attracts a predator increasing the risk of being killed, the sound is a cue for the predator about the location of its prey. When an alert animal deliberately gives a warning call to a stalking predator resulting in the predator giving up the hunt, this sound, the alert call, is a signal both for conspecifics and the predator. Different species can, thus, communicate by means of signals which both recognize and behave accordingly.

Secondary sexual traits are features that distinguish the two sexes of a species, but that are not directly part of the reproductive system. They are probably the product of sexual selection for traits, which give an individual an advantage over its rivals in courtship and competitive interactions. Secondary sexual traits are also cues for the opposite sex. They are not directly related to a better production of offspring, but are normally good indicators of better sperm quality or egg production, e,g, manes of male lions (Panthera leo) and long feathers of male peacocks (Pavo cristatus). In humans, visible secondary sexual traits include enlarged breasts of females and facial hair on males.

The study of signals and cues is more complex that it may appear at first sight. Cues can become signals. In 1952, Niko Tinbergen described ritualization as the evolutionary process whereby a cue may be converted into a signal, e.g. the canine behavior of baring teeth. In 1975, Zahavi described the handicap principle where the reliability of some signals is ensured because they advertise greater costs than absolutely necessary, e.g. the exaggerated plumage of the peacock.

We must understand correctly what the intentionality of signals means and not to confound the intentionality of the signal itself with its origin, development and evolution. Signals do not origin by design with a determined purpose. Some features or behaviors just happen at a certain time to be efficient for an organism in generating in another organisms the right behavior at the right time. If they convey an advantage to these organisms in their struggle for survival (and reproduction), they will spread in the population (provided these organisms reproduce). With time, they gain intentionality and become true signals, but their origin was accidental like everything else. This is the reason why I had to modify (some extensively) the definitions I use in this text and I had to create new ones—to make them compatible with the Darwinian theory of evolution.

Applying the principle of simplicity, as always, I suggest the following definitions:

signal is everything that intentionally changes or maintains the behavior of the receiver. A cue is everything that unintentionally changes or maintains the behavior of the receiver.

These definitions open for the possibility to better distinguish between the intentional signals (proper signals) we send and the unintentional ones (which are cues). For example, many dog owners say “no” to their dogs meaning “stop what you are doing,” but their (unintentional) body language (cue) says “yes.”

In conclusion: signal is the most correct term to denominate what we use when we communicate with our animals; and signals may assume many forms, auditory (the words we use), visual (the hand movements and body language we use), olfactory (in canine detection work), tactile (a touch, very common in horse training) and probably also palatable.

So, enjoy the consequence of your (intentional) signals and be careful with any cues you may be (inadvertently) sending to your favorite animal. Enjoy as well your further studies of this fascinating topic: animal communication.

 

References and further readings

  • Dawkins, M. S., and T. Guilford (1991). The corruption of honest signalling. Animal Behaviour 41:865–873.
  • Donath, J. (2007). Signals, cues and meaning (February draft for Signals, Truth and Design. MIT Press)
  • Hasson, Oren (1997). Towards a general theory of biological signaling. Journal of Theoretical Biology 185: 139-156.
  • Hauser, Marc D. and Mark Konishi, eds. (1999). The design of animal communication. Cambridge: Bradford/MIT Press.
  • Maynard Smith, John and David Harper (1995). Animal signals: Models and terminology. Journal of Theoretical Biology 177: 305-311.
  • Maynard Smith, John and David Harper (2003). Animal signals. Oxford University Press, UK.
  • McFarland, D. (1999). Animal Behaviour. Pearson Education Limited, UK.
  • Otte, D. (1974). Effects and functions in the evolution of signaling systems. Annual Review of Ecology and Systemat- ics 5:385–417.
  • Saleh, N et al. (2007) Distinguishing signals and cues: bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arthropod-Plant Interactions, 2007, 1:119–127
  • Schaefer, H. M. and  Braun, J. (2009). Reliable cues and signals of fruit quality are contingent on the habitat in black elder (Sambucus nigra). Ecology, 90(6), 2009, pp. 1564–1573.
  • Searcy, W. A., and S. Nowicki (2005). The evolution of animal communication. Princeton University Press, Princeton, New Jersey, USA.
  • Tinbergen, N. (1952). The curious behavior of the stickleback. Scientific American December 1952.
  • Zahavi, A. (1975). Mate selection: a selection for a handicap. Journal of Theoretical Biology 53:204–214.
CheeringDiploma
Happy Golden
Earn your Diploma in Animal Behavior and Training paying your fees in monthly installments
CPDT: EUR 110 — CACE: EUR 132 — CAAE: EUR 214
Start earning your diploma from Ethology Institute Cambridge, today!
Click here to read more and select your favorite program. Then choose, "pay by installments."

Bonding with Your Dog—Are You Doing it Properly?

Desi And Dog

Bonding develops stronger and more readily in stressful situations. SAR handlers and their dogs have probably some of the strongest bonds we witness between the two species. Photo: Désirée Mallè, Alpine Rescue Team, and her dog.

Bonding in animal behavior is a biological process in which individuals of the same or different species develop a connection. The function of bonding is to facilitate co-operation.

Cat and rabbit (photo by Mark Taylor).

Cat and rabbit (photo by Mark Taylor).

Parents and offspring develop strong bonds so that the former take care of the latter and the latter accept the teachings of the former. This serves both parties best. As a result of filial bonding, offspring and parents or foster parents develop an attachment. This attachment ceases to be important once the juvenile reaches adulthood, but may have long-term effects upon subsequent social behavior. Among domestic dogs, for example, there is a sensitive period from the third to the tenth week of age, during which normal contacts develop. If a puppy grows up in isolation beyond about fourteen weeks of age, it will not develop normal relationships.

Males and females of social species develop strong bonds during courtship motivating them to care for their progeny, so they increase their chances of the survival of 50% of their genes.

Social animals develop bonds by living together and having to fend for their survival day after day. Grooming, playing, mutual feeding, all have a relevant role in bonding. Intense experiences do too. Between adults, surviving moments of danger together seems to be strongly bonding.

Rabbit and kitten (photo by Mark Taylor).

Rabbit and kitten (photo by Mark Taylor).

Bonding behavior like grooming and feeding seems to release neurotransmitters (e.g., oxytocin), which lowers innate defensiveness, increasing the chances of bonding.

We often mention bonding together with imprinting. Even though imprinting is bonding, not all bonding is imprinting. Imprinting describes any kind of phase-sensitive learning (learning occurring at a particular age or a particular life stage) that is rapid and apparently independent of the consequences of behavior. Some animals appear to be preprogrammed to learn about certain aspects of the environment during particular sensitive phases of their development. The learning is pre-programmed in the sense that it will occur without any obvious reinforcement or punishment.

Our dogs in our domestic environments develop bonds in various ways. Grooming, resting with each other, barking together, playing and chasing intruders are strong bonding behaviors. Their bonding behavior is by no means restricted to individuals of their own species. They bond with the family cat as well and with us, humans.

Bonding is a natural process that will inevitably happen when individuals share responsibilities. Looking into one another’s eyes is only bonding for a while, but surviving together may be bonding for lifetime—and this applies to all social animals, dogs and humans included.

We develop stronger bonds with our dogs by doing things together rather than by just sitting and petting them. These days, we are so afraid of anything remotely connected with stress that we forget the strongest bonds ever originate under times of intense experiences. A little stress doesn’t harm anyone, quite the contrary. I see it every time I train canine scent detection. The easier it is, the quickest it will be forgotten. A tough nut to crack, on the other hand, is an everlasting memory binding the parties to one another.

I even suspect one of the reasons we have so many divorces these days is that we want everything to be easy and oh so pleasant that in the end, there’s nothing holding the two together—but that’s another story for maybe another time. Meanwhile, ponder and enjoy the photos from the great animal photographer Mark Taylor.

"Ethology" by Roger Abrantes

If animal behavior fascinates you, you will enjoy "Ethology—The Study of Animal Behavior in the Natural Environment," the book and course by ethologist Roger Abrantes.
Enrolling for this course puts you in direct contact with the author to whom you can pose any question while you complete your coursework. Click here to read more and enroll.

The 20 Principles of Genes, Environment and Breeding

Golden with puppies.

Hereditary traits are inherited equally from both parents. However, the mother will have more influence on the puppies’ behavior than the father because she spends more time with them.

 

Genes code for the traits an organism will show, physical as well as behavioral, but genes are not all. The environment of that organism also plays a crucial role in the way some of its genes will express themselves.

Genes play a large role in the appearance and behavior of organisms. Phenotypes (the appearance of the organism) are determined, in various degrees, by the genotype program (the sum of all genes) and the interaction of the organism with the environment. Some traits are more modifiable by environmental factors, others less. For example, while eye color is solely determined by the genetic coding, genes determine how tall an individual may grow, but nutritional, as well as other health factors experienced by that organism, determine the outcome. In short: the environment by itself cannot create a trait, and only a few traits are solely the product of a strict gene coding.

The same applies to behavior. Behavior is the result of the genetic coding and the effects of the environment on a particular organism. Learning is an adaptation to the environment. Behavioral genetics studies the role of genetics in animal (including human) behavior. Behavioral genetics is an interdisciplinary field, with contributions from biologygeneticsethologypsychology, and statistics. The same basic genetic principles that apply to any phenotype also apply to behavior, but it is more difficult to identify particular genes with particular behaviors than with physical traits. The most reliable assessment of an individual’s genetic contribution to behavior is through the study of twins and half-siblings.

In small populations, like breeds with a limited number of individuals, the genetic contribution tends to be magnified because there is not enough variation. Therefore, it is very important that breeders pay special importance to lineages, keep impeccable records, test the individuals, and choose carefully, which mating system they will use. Failure to be strict may result in highly undesirable results in a few generations with the average population showing undesired traits, physical as well as behavioral.

We breed animals for many different purposes. Breeding means combining 50% of the genes of one animal (a male) to 50% of the genes of another animal (a female) and see what happens. We can never choose single genes as we wish and combine them, so we get the perfect animal, but knowing which traits are dominant, which are recessive, and being able to read pedigrees helps us.

 

Siberian Husky puppies.

Litter mates share on average 50% common genes, but only on average. Each got at random 50% of its genes from the male (father) and 50% from the female (mother), but not necessarily the same 50% from each (Photo by TheHusky.info).

 

Here are some guidelines for breeding (inspired by “20 Principles of Breeding Better Dogs” by Raymond H. Oppenheimer). The objective of the following 20 principles is to help breeders strive for a healthy and fit animal in all aspects, physically as well as behaviorally.

1. The animals you select for breeding today will have an impact on the future population (unless you do not use any of their offspring to continue breeding).

2. Choose carefully the two animals you want to breed. If you only have a limited number of animals at your disposition, you will have to wait for the next generation to make any improvement. As a rule of thumb, you should expect the progeny to be better than the parents.

3. Statistical predictions may not hold true in a small number of animals (as in one litter of puppies). Statistical predictions show accuracy when applied to large populations.

4. A pedigree is a tool to help you learn the desirable and undesirable attributes that an animal is likely to exhibit or reproduce.

5. If you have a well-defined purpose for your breeding program, which you should, you will want to enhance specific attributes, but don’t forget that an animal is a whole. To emphasize one or two features of the animal, you may compromise the soundness and function of the whole organism.

6. Even though, in general, large litters indicate good health and breeding conditions, quantity does not mean quality. You produce quality through careful studies. Be patient and wait until the right breeding stock is available, evaluate what you have already produced and above all, have a breeding plan that is, at least, three generations ahead of the breeding you do today.

7. Skeletal defects are the most difficult to change.

8. Don’t bother with a good animal that cannot reproduce well. The fittest are those who survive and can pass their survival genes to the next generation.

9. Once you have approximately the animal you want, use out-crosses sparingly. For each desirable characteristic you acquire, you will get many undesirable traits that you will have to eliminate in succeeding generations.

 

Wolf mother and cubs.

Adult wolves regurgitate food for the cubs to eat. Many dog mothers do the same (Photo by Humans For Wolves).

 

10. Inbreeding is the fastest method to achieve desirable characteristics. It will bring forward the best and the worst of your breeding stock. You want to keep the desirable traits and eliminate the undesirable. Inbreeding will reveal hidden traits that you may consider undesirable, and want to eliminate. However, be careful, repeated inbreeding can increase the chances of offspring being affected by recessive or deleterious traits.

11. Once you have achieved the characteristics you want, line-breeding with sporadic outcrossing seems to be the most prudent approach.

12. Breeding does not create anything new unless you run into favorable mutations (seldom). What you get is what was there to begin with. It may have been hidden for many generations, but it was there.

13. Litter mates share on average 50% common genes, but only on average. Each one got at random 50% of its genes from the male (father) and 50% from the female (mother), but not necessarily the same 50% from each.

14. Hereditary traits are inherited equally from both parents. Do not expect to solve all of your problems in one generation.

15. If the worst animal in your last litter is no better than the worst animal in your first litter, you are not making progress.

16. If the best animal in your last litter is no better than the best animal in your first litter, you are not making progress.

17. Do not choose a breeding animal by either the best or the worst that it has produced. Evaluate the total breeding value of an animal by means of averages of as many offspring as possible.

18. Keep in mind that quality is a combination of soundness and function. It is not merely the lack of undesirable traits, but also the presence of desirable traits. It is the whole animal that counts.

19. Be objective. Don’t allow personal feelings to influence your choice of breeding stock.

20. Be realistic, but strive for excellence. Always try to get the best you can. Be careful: when we breed animals for special characteristics, physical as well as behavioral, we are playing with fire, changing the genome that natural selection created and tested throughout centuries.

 

Related articles

References

 

CPDTCertified Professional Dog Trainer online self-study
"Roger Abrantes teaches Boxer to retrieve

Earn your CPDT (Certified Professional Dog Trainer) diploma—nine online courses, two video Proficiency Verifications.
EUR 1,030 (or EUR 110 monthly) — USD 1,091.45 (or USD 116.56 monthly).

ReadMoreEnrollNow

Canine Ethogram—Social and Agonistic Behavior

 

Behavior is the response of the system or organism to various stimuli, whether internal or external, conscious or subconscious, overt or covert, and voluntary or involuntary.

Behavior does not originate as a deliberate and well-thought strategy to control a stimulus. Initially, all behavior is probably just a reflex, a response following a particular anatomical or physiological reaction. Like all phenotypes, it happens by chance and evolves thereafter.

Natural selection favors behaviors that prolong the life of an animal and increase its chance of reproducing; over time, a particularly advantageous behavior spreads throughout the population. The disposition (genotype) to display a behavior is innate (otherwise the phenotype would not be subject to natural selection and evolution), It requires, though, maturation and/or reinforcement for the organism to be able to apply it successfully. Behavior is, thus, the product of a combination of innate dispositions and environmental factors. Some behaviors require little conditioning from the environment for the animal to display it while other behaviors require more.

Pictures illustrating canine social and agonistic behavior.

Pictures illustrating canine social and agonistic behavior. For the classification of the behavior, please see ethogram below. Behavior is dynamic (not static). All interpretations are therefore only approximate and as pictures allow.

An organism can forget a behavior if it does not have the opportunity to display it for a period, or the behavior can be extinguished if it is not subject to reinforcement for a period.

Evolution favors a systematic bias, which moves behavior away from a maximization of utility and towards a maximization of fitness.

Social behavior is behavior involving more than one individual with the primary function of establishing, maintaining, or changing a relationship between individuals, or in a group (society).

Most researchers define social behavior as the behavior shown by members of the same species in a given interaction. That excludes behavior such as predation, which involves members of different species. On the other hand, it seems to allow for the inclusion of everything else such as communication behavior, parental behavior, sexual behavior, and even agonistic behavior.

Sociologists insist that behavior is an activity devoid of social meaning or social context, in contrast to social behavior, which has both. This definition does not help us much. All above-mentioned behaviors do have a social meaning and a context unless ‘social’ means ‘involving the whole group’ (society) or ‘a particular number of its members.’ In that case, we should ask how many individuals we need in an interaction to classify it as social. Are three enough? If so, then, sexual behavior is not social behavior when practiced by two individuals, but becomes social with three or more being involved, which is not unusual in some species. We can use the same line of arguing for communication behavior, parental behavior, and agonistic behavior. It involves more than one individual, and it affects the group (society), the smallest possible consisting of two individuals.

Agonistic behavior includes all forms of intraspecific behavior related to aggression, fear, threat, fight or flight, or interspecific when competing for resources. It explicitly includes behaviors such as dominant behavior, submissive behavior, flight, pacifying, and conciliation, which are functionally and physiologically interrelated with aggressive behavior, yet fall outside the narrow definition of aggressive behavior. It excludes predatory behavior.

Dominant behavior is a quantitative and quantifiable behavior displayed by an individual with the function of gaining or maintaining temporary access to a particular resource on a particular occasion, versus a particular opponent, without either party incurring injury. If any of the parties incur injury, then the behavior is aggressive and not dominant. Its quantitative characteristics range from slightly self-confident to overtly assertive.

Dominant behavior is situational, individual and resource related. One individual displaying dominant behavior in one specific situation does not necessarily show it on another occasion toward another individual, or toward the same individual in another situation.

Dominant behavior is particularly important for social animals that need to cohabit and cooperate to survive. Therefore, a social strategy evolved with the function of dealing with competition among mates, which caused the least disadvantages.

Aggressive behavior is behavior directed toward the elimination of competition while dominance, or social-aggressiveness, is behavior directed toward the elimination of competition from a mate.

Fearful behavior is behavior directed toward the elimination of an incoming threat.

Submissive behavior, or social-fear, is behavior directed toward the elimination of a social-threat from a mate, i.e. losing temporary access to a resource without incurring injury.

Resources are what an organism perceives as life necessities, e.g. food, mating partner, or a patch of territory. What an animal perceives to be its resources depends on both the species and the individual; it is the result of evolutionary processes and the history of the individual.

Mates are two or more animals that live closely together and depend on one another for survival.

Aliens are two or more animals that do not live close together and do not depend on one another for survival.

A threat is everything that may harm, inflict pain or injury, or decrease an individual’s chance of survival. A social-threat is everything that may cause the temporary loss of a resource and may cause submissive behavior or flight, without the submissive individual incurring injury. Animals show submissive behavior by means of various signals, visual, auditory, olfactory and/or tactile.

Canine ethogram social agonistics

Canine ethogram for social and agonistic behavior. The colors illustrate that the categories are constructed by us. When a behavior turns into another one is a matter of convention and interpretation (illustration by Roger Abrantes).

The diagram does not include a complete list of behaviors (please, click on the diagram to enlarge it).

_________________
PS—I apologize if by chance I’ve used one of your pictures without giving you due credit. If this is the case, please e-mail me your name and picture info and I’ll rectify that right away.

Special OfferHappy Golden
FEATURED Course of the week—limited OFFER
at a reduced price—ONLY until Sunday. Click here.

References

"Ethology" by Roger Abrantes

If animal behavior fascinates you, you will enjoy "Ethology—The Study of Animal Behavior in the Natural Environment," the book and course by ethologist Roger Abrantes.
Enrolling for this course puts you in direct contact with the author to whom you can pose any question while you complete your coursework. Click here to read more and enroll.

Pacifying Behavior—Origin, Function and Evolution

— by Roger Abrantes

Pacifying behavior (Latin pacificare, from pax = peace and facerefacio = to make) is all behavior with the function of decreasing or suppressing an opponent’s aggressive or dominant behavior or restoring a state of tranquility. There are two ways of classifying pacifying behavior: (1) to include all behaviors with the function of diffusing social conflict, and (2) to restrict it to a particular range within the broader spectrum of conflict decreasing behavior (see diagram below). This author prefers the latter because the broad use of the term in the first option makes it synonymous with conflict decreasing behavior in general, without reference to any particular sub-class of this behavior.

Roger Abrantes And Rottweiler.

This Rottweiler female shows me friendly behavior licking my face and ear. I show that I accept her friendly behavior by turning my face away from her, closing my eyes and mouth and making champing noises. Mostly, dogs show friendly and pacifying behavior to humans as they do to other dogs (photo by Lisa J. Bain).

Pacifying behavior is closely related to friendly behavior (including greeting behavior), insecure, submissive and fearful behavior. In general, the differences between these behavior displays are quantitatively small, but we can classify them separately and qualitatively according to their respective sub-functions. An animal pacifies another using a complex sequence of different behaviors as we can see in the diagram below. An animal very seldom shows a single behavior. Also, the same behavior may achieve different functions depending on its intensity, and the sum of all behaviors displayed at a given moment.

Pacifying behavior did not originate as a deliberate and well-thought strategy to manipulate an opponent. Initially, it was probably just a reflex. Like all phenotypes, it happened by chance and evolved thereafter.

Pacifying Behavior in Canids

Pacifying behavior in dogs: licking own lips, licking and pawing (images by Alanic05 and Colorado Great Pyrenee Rescue Community).

Natural selection favors behaviors that prolong the life of an animal and increase its chance of reproducing; over time pacifying behavior spread throughout the population. Evolution favors a systematic bias, which moves behavior away from the maximization of utility and towards the maximization of fitness.

pacifying behavior animals

Many species show pacifying displays in their behavior repertoire (photos by J. Frisch, AFP and Aleixa).

The origin of pacifying behavior—Animal A facing aggressive opponent B registers (sensory system) B’s behavior, processes it (neurological system) and responds with a behavior. The aggressive animal B registers this behavior (probably an infantile behavior); some behaviors tend to pacify it (probably eliciting parental behavior) while others do not. The pacified state of B benefits A and reinforces its behavior, i.e. it is likely it will repeat the same behavior in similar circumstances. Most importantly, animals that show appropriate pacifying behavior (such as A) survive conflicts and avoid injury more often than not and subsequently pass their genes onto the next generation.

Pacifying behavior also pacifies the pacifier, which is an important feature of this behavior. By displaying pacifying behavior, an insecure animal attempts to regain some security (homeostasis) by displaying a behavior it knows well and has previously served to reassure it.

Dog and Cat

Cat and dog use the pacifying behavior of their own species to communicate with one another successfully because of the common characteristics of the behavior (photo by Malau).

Some pacifying behavior has its origins in neonatal and infantile behavior and only becomes pacifying behavior through redirection and eventually ritualization. Other forms of pacifying behavior rely on concealing all signs of aggressive behavior. Sexual behavior can also function as pacifying. Young animals of social species learn pacifying behavior at a very early age; it is important for young animals to be able to pacify adults when they begin interacting with them. The disposition (genotype) to display the behavior is innate (otherwise the phenotype would not be subject to natural selection and evolution), although it requires reinforcement for the young animal to be able to apply it successfully. In canines, adults (initially the mother at the time of weaning) teach the cubs/pups the intricacies of pacifying behavior, a skill they will need to master in order to prevent or resolve hostilities that could cause serious injuries.

Even though pacifying behavior is more relevant and developed in social species, we also find pacifying displays in the behavior repertoire of less social species. Animals successfully use the pacifying behavior characteristic of their species with individuals belonging to other species (if possible) because of the common elements of pacifying behavior across species. It is not unusual to see our domestic animals, dogs, cats and horses interacting peacefully and exchanging pacifying signals. Dogs also show friendly, insecure, pacifying or submissive behavior to their owners and other humans with their species characteristic displays. Licking, nose poking, muzzle nudging, pawing and twisting are common behaviors that dogs offer us.

This diagram shows the placement of pacifying behavior in the spectrum of behavior in canids. The diagram does not include a complete list of behaviors. A conflict is any serious disagreement, a dispute over a resource, which may lead to one or both parts showing aggressive behavior. Resources are what an organism perceives as life necessities, e.g. food, mating partner or a patch of territory. What an animal perceives to be its resources depends on both the species and the individual; it is the result of evolutionary processes and the history of the individual.

Pacifying Spectrum

The spectrum of pacifying behavior in canids (by R. Abrantes). The colored background illustrates and emphasizes that behavior is a continuum with fading thresholds between the various behaviors. The vertical lines are our artificial borders, a product of definition and convention.

 

References

  • Abrantes, R. 1997. The Evolution of Canine Social Behavior. Wakan Tanka Publishers.
  • Abrantes, R. 1997. Dog Language. Wakan Tanka Publishers.
  • Abrantes, R. 2014. Canine Muzzle Grasp Behavior—Advanced Dog Language.
  • Abrantes, R. 2014. Canine Muzzle Nudge, Muzzle Grasp And Regurgitation Behavior.
  • Abrantes, R. 2014. Why Do Dogs Like To Lick Our Faces?
  • Coppinger, R. and Coppinger, L. 2001. Dogs: a Startling New Understanding of Canine Origin, Behavior and Evolution. Scribner.
  • Darwin, C. 1872. The Expressions of the Emotions in Man and Animals. John Murray (the original edition).
  • Fox, M. 1972. Behaviour of Wolves, Dogs, and Related Canids. Harper and Row.
  • Lopez, Barry H. (1978). Of Wolves and Men. J. M. Dent and Sons Limited.
  • Mech, L. D. 1970. The wolf: the ecology and behavior of an endangered species. Doubleday Publishing Co., New York.
  • Mech, L. David (1981). The Wolf: The Ecology and Behaviour of an Endangered Species. University of Minnesota Press.
  • Mech, L. D. 1988. The arctic wolf: living with the pack. Voyageur Press, Stillwater, Minn.
  • Mech. L. D. and Boitani, L. 2003. Wolves: Behavior, Ecology, and Conservation. University of Chicago Press.
  • Scott, J. P. and Fuller, J. L. 1998. Genetics and the Social Behavior of the Dog. University of Chicago Press.
  • Zimen, E. 1975. Social dynamics of the wolf pack. In The wild canids: their systematics, behavioral ecology and evolution. Edited by M. W. Fox. Van Nostrand Reinhold Co., New York. pp. 336-368.
  • Zimen, E. 1982. A wolf pack sociogram. In Wolves of the world. Edited by F. H. Harrington, and P. C. Paquet. Noyes Publishers, Park Ridge, NJ.

Is it possible for all of us to become givers—no takers at all?

—by Roger Abrantes

 

Bird Mouse Alturism

 

Wouldn’t it be nice if we all gave without expecting anything in return? What a beautiful world we would have. At one time or another, most of us have embraced such thoughts. But is it possible at all? Is it possible for all of us to become givers—no takers at all?

An evolutionary biologist will tell you right away that it is not possible. Every behavioral strategy, when adopted by everyone in a group, is vulnerable to any variation or mutation that will carry a slight advantage. Were we all to become givers, we would be at the mercy of the first taker that would show up. More takers would follow for if it works for one, it works for others as well.

All relationships are a trade, a “give and take.” How much we give and how much we take depends on the benefits and costs involved. The goal is to come out of any trade with gain. Occasional deficits are acceptable as long as the overall balance stays on the plus side. That is the law of life. We spend energy to gain energy, to keep alive. Sometimes, we need to plan long-termed. There are both benefits and costs that we do not incur immediately. The law is still the same: the balance must end up on the positive side or life will end.

Apart from our dream of a better world full of unselfish givers, it looks at first sight like taking and not giving is the most profitable strategy. The problem is that we cannot all be takers. Takers can’t take from takers, they can only take from givers. Thus, it would appear that the givers would always be at a loss, but that is not the case. Givers receive from other givers, and they don’t spend energy fighting with takers. On the other side, takers spend energy when facing other takers without gaining anything. While giver/giver allows both to come out on the plus side of the balance, taker/taker always comes out with a deficit.

Givers and takers keep each other at bay. The ideal number for each, so that there is stability, depends solely on the value of benefits and costs.

To analyze how different strategies influence one another, the evolutionary biologist strips the strategies to their core and assigns some values to the variables, i.e. benefits and costs.

Let’s assume that when a taker meets a taker, they benefit nothing and spend much energy. When a giver meets another giver, they both give and take equally, and they spend some energy (they have both benefits and costs). When a taker meets a giver, the taker benefits 100%, and the giver spends energy (costs). We set the value of benefits and costs as follows:

  • benefit (b) 20 (conferred by the givers to anyone)
  • cost (c) -5 (the cost of giving)
  • taker/taker cost (e) -50 (this is the energy takers spend when fighting one another to take without giving).

Let’s now calculate the percentage of takers and givers necessary to achieve an equilibrium so that both strategies give the same profit.

The proportion of takers = t
The proportion of givers (g) = (1-t)
The average payoff for a giver (g) is G = ct + (b+c)(1-t)
The average payoff for a taker (t) is T = et + b(1-t)
There is an equilibrium (stability) when G=T.

 

Strategy Opponent’s strategy
Takers Givers
Takers e b
Givers c b+c

 

Example 1—With the above values for benefits and costs, 10% takers and 90% givers gives both a profit of 13 and there is stability. If the cost of takers fighting one another decreases, then it pays off (for more individuals) to become a taker.

Example 2—The figures in example 1 seem to suggest that takers should avoid one another as much as possible. Let’s say they do it in three out of four times. Then, and still with the same values, the number of takers can rise to 40%, and we still have an equilibrium, i.e. an ESS (Evolutionarily Stable Strategy). However, the profit will be less for both givers and takers, namely 7—more takers equals less profit for all.

That is a good example of what happens in our capitalistic human societies dominated by the idea of taking more and more. Takers take all they can but end up poorer than if they took less. The capitalistic instinct says, “take more,” but a more rational approach would clearly show that taking less would amount to profiting more. The strategy of taking maximally works only for a limited time. In the end, it backfires (depression, recession, etc.) because it upsets the balance between the available strategies, which, by then, have become evolutionarily unstable.

Example 3—Encounters between takers ar very expensive. What if takers would avoid takers all the time? In this case, the number of takers can rise up to 80%. Beyond that the strategies become evolutionarily unstable. The interesting is that even thought there would be stability with such a high number of takers, both takers and givers would come at a loss of -1. That is not at all a healthy strategy for any individual, let alone a group. It’s the sign of a society in decay. It’s what happens in a group, which is dominated by greed and selfishness.

Example 4—Since our wish is a world full of givers let us see how we can maximize the number of givers. We need to change the values for benefits and costs. Let’s decrease the cost of giving and increase the costs incurred by takers when fighting one another.

  • benefit (b) 20 (remains the same)
  • cost (c) -1 (lower cost than above)
  • taker/taker cost (e) -100 (much higher cost than above)

With these values, we can reach a maximum of 99% givers versus 1% takers. Both will have a profit equal to 18.80. Note that this the highest achieved profit in all our simulations.

The only variables that reduce the number of takers are the cost (e) and the probability of facing another taker. If we keep the values of benefits and costs the same as initially (b=20, c=-5) the costs of the struggle between two takers must rise to -500 for the strategies to be evolutionarily stable. The profit, then, would be 14.80 instead of 18.80.

These are artificial figures we use to analyze the necessary conditions for an Evolutionarily Stable Strategy to emerge. We may question the unlikeliness of the costs of an interaction to rise as high as we have set the taker/taker encounters. And yet, conflicts between male Northern elephant seals, Mirounga angustirostris, often end with a critical injury or the death of one of the parties. The costs are high, but so are the benefits: in Northern elephant seals, fewer than 5% of the males are responsible for 50% or more of the copulations. A red deer stag, Cervus elaphus, has about a 25% chance to be injured permanently from fighting (like in our example 2).

Also interesting is that the value of the benefits does not change the proportion of takers versus givers, only the profit. For example, with b=40, the profit is 34.60 (versus 18.80 and 14.80 for the other values for benefits in the examples). The values we used are all fictive, but it doesn’t matter. They show us the trends created by increasing or decreasing a variable. To evaluate real situations, we can use realistic figures inasmuch as we can get them. We can assign values to benefits and costs according to gain or loss of calories, body weight, number of progeny, available mating partners, fitness or even quality of life (if we find a reliable way to measure it).

The conclusion is that there will always be givers and takers—or that any strategy needs a counterpart to form an ESS. We can influence the trend of adopting one or the other strategy with the benefits and costs involved, but we can’t eliminate either one completely—and this is the universal law of life. In other words: every mountain has a sunny and a shady side.